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• Study of node classification on sparse feature-decorated graphs on a fairly 
general statistical data model 

• Define a notion of asymptotically local Bayes optimality 

• Optimal classifier is realizable via a message-passing GNN architecture 

• Generalization error bounds in terms of recognizable SNR in the data 

• Empirical demonstration and comparison with other architectures

Contributions



Data Model
# of nodes

# of features per node

n =
d =

class labels

# of classes

{yu}u∈[n] =
C =

Graph Component 
 

 
A = (auv)u,v∈[n] ∼ SBM(n, Q)
Pr(auv = 1 ∣ yu, yv) = qyuyv

qij = O(1/n)

Node features 
 

Feature distribution for class  
Xu ∼ ℙyu

∈ ℝd

ℙc = c



Data Model
CSBM  denotes a feature-decorated graph from this model with: 

• Adjacency matrix  

• Node features 

Gn ∼ (n, ℙ, Q)
A ∈ {0,1}n×n

X ∈ ℝn×d

 denotes a uniform at random node in  

 denotes a graph rooted at node 

un Gn
(Gn, un) un

Question: Given  and a root  along with its local 
neighbourhood information, how to define the notion of an “optimal classifier” 
for the model? 

ℙ, Q un ∈ V(Gn)



-local Classifierℓ

Denoted  

Input: 
• A root node  
• Subgraph induced by , the -hop neighbourhood of  
• Features  

Output: a class label prediction  for 

f(u, ηℓ(u), {Xv}v∈ηℓ(u))

u
ηℓ(u) ℓ u

{Xv} ∀v ∈ ηℓ(u)
̂yu u

 denotes the class of all -local classifiers.𝒞ℓ ℓ



Local Weak Convergence
For a uniform at random root node , the sequence of rooted graphs 
from this model converges locally weakly: 

. 

•  is a feature-decorated Poisson Galton-Watson tree. 

• Roughly speaking, in the limit  the local neighbourhood of a 
uniform at random node behaves like the local neighbourhood of a 
Poisson Galton-Watson tree.

un

(Gn, un)
LWC (G, u)

(G, u)

n → ∞



We say  is the asymptotically -locally Bayes optimal classifier of the root 

of the sequence  if it minimizes the misclassification probability of 

the root of the local weak limit  over .

h*ℓ ℓ
{(Gn, un)}

(G, u) 𝒞ℓ

 h*ℓ (u, ηℓ(u), {Xv}v∈ηℓ(u)) = argmax
i∈[C]

{log ℙi(Xu) + ∑
v∈ηℓ(u)∖{u}

Mi d(u,v)(Xv)}
Mik(x) = max

j∈[C] {log ℙj(x) + log qk
ij}

Theorem

Optimal Classifier



GNN Architecture
,


,


,


H(0) = X

H(l) = σl(H(l−1)W(l)+1nb(l)) for l ∈ [L]

Q = sigmoid(Z)

M(k)
u,i = max

j∈[C] {H(L)
u,j + log(Qk

i,j)}  for k ∈ [ℓ], u ∈ [n], i ∈ [C]

̂yu = argmax
i∈[C] (H(L)

u,c +
ℓ

∑
k=1

Ã(k)
u,:M(k)

:,i )
d × 1 C × 1

MLP GNN

1

1

0

0

1

0

,  for  and  are 
learnable parameters of the model.
W(l) b(l) l ∈ [L] Z



Example
 ℙ = {𝒩(±μ, σ2I)}

Q =
1
n (a b

b a)

 

,           

h*ℓ (u, {Xv}v∈ηℓ(u)) = sgn(⟨Xu, μ⟩ + ∑
v∈ηℓ(u)∖{u}

Md(u,v)(Xv))

Mk(x) = sgn(a − b) ⋅ CLIP(⟨x, μ⟩, ± ck) ck = log ( 1 + Γk

1 − Γk )

Graph signal  

Feature signal 

Γ =
|a − b |
a + b

γ =
2∥μ∥

σ



• When ,  ignores all messages and collapses to a simple MLP. 

• When ,  collapses to a typical GCN. 

• When ,  interpolates and is superior to MLP and GCN.

Γ → 0 h*ℓ
Γ → 1 h*ℓ
Γ ∈ (0,1) h*ℓ

Theorem

Results
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Results



Results



Non-Asymptotic Result

For fixed number of nodes  and , the classifier  is 

 away from the true optimal in terms misclassification probability.

n 4ℓ ≤ log𝔼 deg(n) h*ℓ
on(1)

Theorem

•  minimizes probability of misclassification in the local weak limit of the model 

•  minimizes probability of misclassification in the finite  model 

• We show that  

• Proof technique utilizes Stein’s method

h*ℓ
h*ℓ,n n

|Error(h*ℓ ) − Error(h*ℓ,n) | = on(1)


