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Contributions

Study of node classification on sparse feature-decorated graphs on a fairly
general statistical data model

Define a notion of asymptotically local Bayes optimality
Optimal classifier is realizable via a message-passing GNN architecture
Generalization error bounds in terms of recognizable SNR in the data

Empirical demonstration and comparison with other architectures



Data Model

n = # of nodes {Vutuepn) = class labels

d = # of features per node C = # of classes

Graph Component Node features

A = (a,),vem ~ SBM(n, Q) X, ~P, R’

Pr(a,,=1]y,y,) = dy v, P . = Feature distribution for class ¢

g; = O(1/n)




Data Model

G, ~ CSBM(n, P, Q) denotes a feature-decorated graph from this model with:
e Adjacency matrix A € {0,1}'""
e Node features X & R4

i, denotes a uniform at random node in G,

(G,, u,) denotes a graph rooted at node u,,

Question: Given P, O and a root u, € V(G,) along with its local |
neighbourhood information, how to define the notion of an “optimal classifier” |
for the model? !



£ -local Classifier

DenOted f(l/t, ﬂf(u), {Xv}verhﬂ(u))

Input:

- A root node u

te Subgraph induced by 7.(u), the £-hop neighbourhood of u
e Features { X} Vv € 17,(u)

\Output: a class label prediction y,, for u |

& , denotes the class of all £-local classifiers.



Local Weak Convergence

iFor a uniform at random root node u,, the sequence of rooted graphs|
ifrom this model converges locally weakly: *
| LWC

(Gna I/ln) — (Ga l/l)

f' (G, 1) is a feature-decorated Poisson Galton-Watson tree.

le Roughly speaking, in the limit # — oo the local neighbourhood of a
| uniform at random node behaves like the local neighbourhood of a



Optimal Classifier

We say h:j is the asymptotically #-locally Bayes optimal classifier of the root

of the sequence {(G,, u,)} if it minimizes the misclassification probability of

the root of the local weak limit (G, u) over € ,.

Theorem

e 10X, )y ) = argmax [ log P+ Y Mo, V><X>}
| ElC] ven(u)\{u}

M. (x) = max {log Pi(x) + log ql.’; }



GNN Architecture

) (I=1)11/(]) (0 W, b torl € [L] and Z are
HY = o (H"’W"+1 b)) for [l € [L], | learnable parameters of the model.

0 = sigmoid(2),

HY =X,

M® = max {Hﬁ + 1og(Q{jj)} tork € [£].u € [n.i € [C]

JELC]
r / \ 0
9, = argmax | H2 + ) AXM® > T
i€[C] = : %



Example

P = {AV(xpu, 21)} Graph signal I =

a+b
I fa b
— 2
Q= - (b a) Feature signal y = H:H

h;k(ua {Xv }ve;f]f(u)) — Sgn ( <Xu’ /’t> T Z Md(u,V)(XV))
ven(u)\{u}

1 +T*
M, (x) = sgn(a — b) - CLIP((x, 1), = ¢}), ¢ = log 1 —T*



Results

h*(” {X }ve;f,f(u)) = sgn(( ﬂ) T Z Md(u v)(X))
ven(u)\{u}

1 +TI* |
M, (x) = sgn(a — b) - CLIP({x, u), £ ¢), ¢, = log —— |

Theorem o
, “When " — O h>I< |gnores all messages and Collapses to a S|mple I\/ILP

. When 1" — 1, h7 collapses to a typical GCN. |
. When 1 € (0,1), h;k interpolates and is superior to MLP and GCN.
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Non-Asymptotic Result

Theorem .

For fixed number of nodes n and 4L” < logdeg

(n) the Classmer h>I< i

0 (1) away from the true optlmal in ) terms mlsclassmcatlon probablllty

. h? minimizes probability of misclassification in the local weak limit of the model
. h:jn minimizes probability of misclassification in the finite n model

« We show that Error(h:j) — Error(h;kn) =0,(1)

e Proof technique utilizes Stein’s method



