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Introduction
• Music audio generation has recently been advanced

by the audio language modeling (LM) approach
(Borsos et al., 2022; Agostinelli et al., 2023).

• The state-of-the-art (SOTA) MusicLM employs a
two-stage modeling framework: semantic mod-
eling followed by acoustic modeling.

• Acoustic modeling in MusicLM entails predict-
ing multiple RVQ tokens, thus defines separately
trained coarse and fine acoustic LMs.

• MusicLM requires sequentially processing through
3 LMs for generation, making it computationally
expensive and prohibitive for a long generation.

• Efficient music generation with a quality on par
with MusicLM remains a significant challenge.

• We propose MeLoDy (M for music; L for LM; D
for diffusion), an LM-guided diffusion model that
generates music audios of state-of-the-art quality
and reduces 95.7% to 99.6% forward passes in
MusicLM for sampling 10s to 30s music.

Background
Conventional text-to-music generation models:

Model Data AC FR VT MP
Moûsai (2023) 2.5kh ✓ ✓ ✗ ✗
MusicLM (2023) 280kh ✓ ✗ ✓ ✗
Noise2Music (2023) 340kh ✗ ✗ ✓ ✗
MusicGen (Parallel) 20kh ✓ ✓ ✓ ✗

MeLoDy (Ours) 257kh ✓ ✓ ✓ ✓

• AC: supports audio continuation
• FR: is faster than real-time on a V100 GPU
• VT: was tested with a variety of text prompts
• MP: was evaluated by music producers
MeLoDy is the first large-scale trained model that
satisfies both AC, FR, VT and MP.

The proposed MeLoDy pipeline
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• The proposed MeLoDy pipeline is inherited from the MusicLM framework, but is much more efficient
with the coarse-and-fine acoustics being simultaneously modeled in one DPD model.

• A critical difference between acoustic LMs and DPD is the definition of auto-encoder: Neural codec
v.s. Audio VAE-GAN (similar to SD); Discrete tokens v.s. Continuous latents.
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• DPD is a variant of latent diffusion models (LDMs) that operates on angular space:
For angle δ ∈ [0, π/2], zδ = cos(δ)z0 + sin(δ)ϵ, ϵ ∼ N (0, I). (zδ gets noisier as δ increases to π/2).

• To learn coarse and fine acoustics in one model, we design a dual-path modeling scheme based on (i)
segmentation (left), and (ii) alternating coarse and fine paths (right) in each DPD block.

• Effective conditioning approaches are proposed for DPD: (i) learnable Slerp for δ-encoding, and
(ii) coarse-path cross-attention & fine-path FiLM conditioning.

Results
1) Speed and quality analysis:

Steps Speed (CPU) Speed (GPU) FAD
5 1472Hz (0.06×) 181.1kHz (7.5×) 7.23
10 893Hz (0.04×) 104.8kHz (4.4×) 5.93
20 498Hz (0.02×) 56.9kHz (2.4×) 5.41

2) Pair-wise compare to MusicLM:
Model Musicality Quality Text Corr.

MusicLM 54.1% 46.5% 54.8%
MeLoDy 45.9% 53.5% 45.2%

3) Pair-wise compare to Noise2Music:
Model Musicality Quality Text Corr.

Noise2Music 55.5% 43.6% 57.2%
MeLoDy 44.5% 56.4% 42.8%

4) Ablation on network architecture:
Network Velocity MSE SI-SNRi
UNet-1D 0.13 5.33
UNet-2D 0.15 4.96

DPD 0.12 6.15

5) Ablation on angle schedule:
Angle schedule Steps FAD

Uniform: ωt = π
2T

10 8.52
20 6.31

Ours: ωt = π
6T + 2πt

3T (T+1)
10 5.93
20 5.41

Broader Impact
• MeLoDy practically facilitates content creators to

express their creative pursuits with text prompts.
• In the light of efficient sampling, MeLoDy also

enables an interactive creation process to take
human feedback into account.


