Expressive probabilistic sampling In
recurrent neural networks

Can neural circuits sample from complex probability
distributions?
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Probabilistic computation is How do neural circuits represent

abundant in the brain posterior distributions?
World state of interest, Relevant sensory TWO HypOtheSiS:
e.g., whether the milk features, e.g., odorant .
is still good composition PY Population_based Cod|ng
o o Neural responses encode parameters of the
o distribution
o Examples: probabilistic population codes, distributed

Neural activity elicited by sensory features, distributional codes (DDC)

e.g., in olfactory cortex

Decision making; possible role for
knowing uncertainty

Estimate of C, action, or motor command L Samp“ng'based COding
o Neural responses represent samples from the
Motor noise distribution

o Pe— o Examples: Langevin/Hamiltonian dynamics

e.g., milk being consumed or discarded

Reward stochasticity

Reward or penalty,
e.g., save a trip to the store or get sick
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Sampling-based coding
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Question: If we are able to write the recurrent neural
dynamics as a stochastic differential equation, what
are the distributions that it can sample from?
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Detour: Stochastic differential equation (SDE)

This is a time-homogeneous SDE,

dXt — b(Xt)dt O'dBt
N—— N

deterministic noise

There is a corresponding Kolmogorov forward (Fokker-Planck) equation
describes how the transition probability density p(x,t) changes with time.

Op 1 7
— = - (XVp» — b Y = —
oy (XVp D), 20’0

APPLIED MATHEMATICS
UNIVERSITY of WASHINGTON




Stationary distribution

A stationary probability distribution of an SDE is one that make the right hand side
of the Fokker-Planck equation vanish, i.e. V - (XVp — bp) = 0

Therefore if we want to sample from the stationary distribution p, we hope that

b =YXVliogp + p_lG Forsome Gsuchthat V - G = 0

An obvious solution is (Langevin dynamics):

b = YVlogp
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b = Vliogp p(x: [z1, wz]T> o exp | —

Langevin Dynamics Monte Carlo

Empincal Deasity



http://www.youtube.com/watch?v=cVn0kru3hL8&t=10

Ability to implement Langevin dynamics is important
Recall that b is the drift term

bg=Vliogp + p 'G

With some constraint on G, it can be shown that the function space of {b9}9
needs to have at least the same number of basis functions as the function space
that V log p is in.

Equivalent question: For any distribution p, is there a parametrization

of the drift term such that by ~ V logp ?
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Neural sampling through lens of SDE

Consider the synaptic current dynamics of a recurrent neural circuit:

dr = |—r + Wyeed(r) + I|dt + odB;

o _J/

by

Can the dynamics above alone sample from complex stationary probability
distribution?

— No, because {bg }yis only spanned by fi(r) = rand fo(r) = ¢(r)
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RNN with an output layer is a universal Langevin
sampler

Reservoir-Sampler network (RSN)

Reservoir Sampler

dr

X

—r + ¢(Wieer + I)|dt + odBy
Woutr

1 neurons > M neurons

One can write down the SDE that is only dependent on x:

e [—x S Woutqb(Wrecx + I)]dt + WyodB,
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Sampler-Only Network Neural Dynamics in SDE Approximation power

Sampler # Func. basis Fixed? Closed?
Noise—\,\“@r . ) Synaptic current dynamics:
PR . 7dv = [—v + W .0(v) + I] dt + odB, O(m) Yes Yes
->
Firing rate dynamics:
v : current 7dr = [_r + Wi +1 )] dt + odB, Ol No No
r : firing rate L _/
RS ; m neurons
Reservoir-Sampler Network
Reservoir Sampler
X
@) Firing rate dynamics:
O =P 7dr = [-r + p(W,r + )| dt + 6dB, o(n) No Yes
O x=W,,r
O
Noise N neurons > M neurons
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Theorem 3. Suppose that we are given a probability distribution with continuously differentiable
density function p(x) : R™ — R™T and score function V log p(x) for which there exist constants
My, My, a,k > 0 such that

p(x) < Mye=all (12)
IV log p(x) |1 < Ms [|x]|* (13)

when ||x|| > L for large enough L. Then for any € > 0, there exists a recurrent neural network whose
firing-rate dynamics are given by (11), whose recurrent weights, output weights and the diffusion
coefficient are given by Wyiec € R™*™ of rank m, Wy € R™*™, and o € R™*™ respectively, such
that, for a large enough n, the score of the stationary distribution of the output units s¢(X) satisfies

B [V 10g p(%) — s0(x)|I°] < .

TL; DR

A stochastic low-rank RNN with an output layer can sample from essentially any
distribution
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Summary of theoretical results

Sampler-Only Network Neural Dynamics in SDE Approximation power

Sampler # Func. basis Fixed? Closed?

@m ) Synaptic current dynamics:
v = [~V + W (V) + 1| dt + 6dB,  O(m)

-

Firing rate dynamics:

v : current tdr = [—r + d)(WTCCr + I)] dt + GdB’ P
r : firing rate \- J

M neurons

Reservoir-Sampler Network

Reservoir Sampler
X

©) Firing rate dynamics:

o =P  7dr = [-r+ (W, r+1)| dt + odB, o(n)
O X = Wy, r
O

N neurons >  m neurons




How to train such an RNN? (1 / 3)

Score matching, i.e. we would like to minimize Ey ) [HV log p(x) — so(x)\ﬂ

Score function Vi logp(x)

p(z)

APPLIED MATHEMATICS Adapted from
UNIVERSITY of WASHESEEES deepgenerativemodels.github.io




How to train such an RNN? (2 / 3)

Denoising Score Matching (perturb the data with noise):

1
EEXNNX 721 [HV log qa( ) — 39(52‘_)”;] (Score matching loss)
1 - 2 (Denoising score
— EEXdiata , X~N(x, 021) [HSQ( ) N vf'( log qJ(X|X)||2] + const. matching loss)
97— 47
Since we use Gaussian noise, V; log ¢,(Z |x) = >
o

The noise variance is gradually decreased as training proceeds
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How to train such an RNN? (3/3)

It turns out that we can first train a 2-layer network through Backpropagation, and
transform the weights of the feedforward network to the weights of the RNN.

Input Hidden Output Reservoir Sampler
layer layer layer

Input #1
Input #2 i
‘€ ) Output

Input #3

Input #4

1 neurons >> M neurons
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Results - mixture distribution
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Scaled density
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SO: Sampler-only
I SC: Synaptic current
FR: Firing rate
RS: Reservoir-Sampler




Results - Heavy-tailed mixture distribution
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Results - MNIST image

a ) L= Training C )
—PSampllng Training Samples

Reservoir Sampler




Discussion

e Our framework builds a bridge between variability in neural dynamics and
biophysical neural circuits model
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Discussion

e Our framework builds a bridge between variability in neural dynamics and
biophysical neural circuits model

e Denoising score matching algorithm gives a way to reverse-engineer the
probabilistic neural computation

e Multiple ways to interpret the Reservoir-Sampler Network:

o Sampler neurons are a part of large population of neurons or the neurons that are recorded.
o Reservoir can be the hidden non-synaptic signaling network

m pervasive neuropeptidergic signaling (Bargmann and Marder, 2013)

m extensive aminergic signaling (Bentley et al., 2016)

m potential extrasynaptic signaling (Yemini et al., 2021)
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