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Introduction

The expressivity of Markov reward has been proved to be limited.

We develop a Maximum Likelihood Estimation for generative modeling of
non-Markovian Decision Process (nMDP), where TD-learning-based imitation
is unreliable.

The novel EM-like algorithm recover the unobserved decisions and underlying
value functions from pure observations without action labels.

Graphical model of policy and transition in standard MDP and nMDP

Abel, David, et al. "On the expressivity of markov reward." Advances in
Neural Information Processing Systems 34 (2021): 7799-7812.



Modeling and Learning

e Trajectory joint distribution:

pe(() = p(SO) HtT:_Ol pa(at|30:t)p5(8t+1 |5t7 at)

e Transition as single-mode Gaussian

N(gﬁ(st,at)aUQ)

e Policy as multi-mode Energy-Based Model (EBM)
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e MLE learning, the gradient is:
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Sampling

e Policy term involves both posterior and prior samples:
0a,t(S) = Epycars) [Valogpa(a|so:t)]
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e Short run Langevin MCMC for prior samples:
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e Importance sampling for posterior samples:
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Theoretical Analysis

e We construct a sequential decision-making problem, whose objective yields
the same optimal policy as MLE.

e \We witness the automatic emergence of the entire family of maximum
(inverse) RL.

e \We derive the posterior probability of action sequences given any goal state,
involving the intermediate transitions.

Decision-making as inference:
policy as prior, planning as inference.



Experiments: Curve Planning

Policy of cubic curve planning is necessarily non-Markovian, since the

historical states are needed to estimate the higher-order derivatives.
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Experiments: MuJoCo

e Our model demonstrates steeper learning curves than state-only baselines.
e Our model matches or surpasses the performance of action-label baselines.
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