Discovering Hierarchical Achievements in **Reinforcement Learning via Contrastive** Learning

Seungyong Moon ¹

Junyoung Yeom ¹ Bumsoo Park ² Hyun Oh Song ¹

¹Seoul National University

²KRAFTON

KRAFTON

Introduction

We propose a new **self-supervised** method in conjunction with **model-free** RL algorithms that improves the agent's capacity for

- 1. generalization across visually diverse environments
- 2. **discovery of various skills** with complex hierarchies.

Crafter Benchmark¹

- Crafter is a 2D open-world game inspired by Minecraft.
- It is optimized for research purposes with
 - fast environment interactions
 - clear evaluation metrics.

¹D. Hafner, Benchmarking the Spectrum of Agent Capabilities, ICLR 2022.

Crafter Benchmark

An agent navigates a previously unseen, procedurally generated environment with varying maps.

Hierarchical Achievements

An agent must discover a set of 22 hierarchical skills, called **achievements**.

Achievement Reward

- An agent receives a sparse reward of 1 upon unlocking a new achievement within an episode.
- **Note**: rewards are given only for the first accomplishment.

Objective

- An agent has no prior knowledge of the achievements and must infer it indirectly from the reward signal.
- The objective is to find the optimal policy that unlocks as many achievements as possible.

Prior Work

- Prior work has mainly relied on **model-based** and **hierarchical methods**, which employ **explicit modules** for long-term planning.
- However, they often suffers from sample and computational inefficiencies.

Motivation

- The model-free approach has been less explored, despite its simplicity and versatility.
- In this work, we aim to explore the capability of PPO in discovering hierarchical achievements.

Model-Free PPO is a Strong Baselines

- We adopt recent implementation practices of PPO.
 - Network size
 - Layer normalization
 - Value normalization
- These modifications significantly improve the performance of PPO.

Achievement Distillation

- We propose a new self-supervised method, achievement distillation, to provide guidance to the encoder for predicting the next achievement in the latent space.
- It leverages the temporal information on when new achievements are unlocked, which is directly identifiable from the reward signal.

Notation

- For each episode τ , we define
 - $(t_i)_{i=1}^m$: the sequence of timesteps at which achievements are unlocked
 - $(g_i)_{i=1}^m$: the sequence of unlocked achievements, each defined by a transition tuple $g_i = (s_{t_i}, a_{t_i}, s_{t_i+1})$.
- For each timestep t, we define
 - g_t^+ : the next immediate achievement
 - g_t^- : the previous immediate achievement.

Intra-Trajectory Achievement Prediction

- Given an episode τ , it trains the encoder θ to maximize the similarity in the latent space between
 - a given state-action pair (s_t, a_t) (positive)
 - its next achievement g_t^+ (anchor).
- We sample a random state-action pair $(s_{t'}, a_{t'})$ (negative) and employ contrastive learning.

Cross-Trajectory Achievement Matching

- Given episodes τ , τ' , it trains the encoder θ to maximize the similarity in the latent space between the identical achievements
 - $g_i \in \tau$ (anchor)
 - $g'_k \in \tau'$ (positive).
- Since the achievement labels are unavailable, we compute the matching between the achievement sequences using partial optimal transport, followed by thresholding.

Cross-Trajectory Achievement Matching

- Then, it trains the encoder to maximize the similarity in the latent space for matched achievements.
- We sample a random achievement $g_j' \in \tau$ (negative) and employ contrastive learning.

Integration with PPO

- We integrate achievement distillation with PPO by introducing an auxiliary phase.
- During the auxiliary phase, we perform achievement distillation with off-policy data collected during multiple PPO updates.
- We jointly regularize the policy and value networks to maintain their outputs.

Experiments

- We train the agent on Crafter for 1M environment steps and measure the score and reward.
 - Score: the geometric mean of success rates for individual achievements during training
 - Reward: the number of unlocked achievements
- We compare our method with four baseline methods.
 - Model-based: MuZero, DreamerV3
 - Hierarchical: SEA
 - Model-free: LSTM-SPCNN

Results

Method	Parameters	Score (%)	Reward
Human Expert	-	$\textbf{50.5} \pm \textbf{6.8}$	$\textbf{14.3} \pm \textbf{2.3}$
Ours	9M	$\textbf{21.79} \pm \textbf{1.37}$	$\textbf{12.60} \pm \textbf{0.31}$
PPO	4M	$\textbf{15.60} \pm \textbf{1.66}$	$\textbf{10.32} \pm \textbf{0.53}$
DreamerV3	201M	$\textbf{14.77} \pm \textbf{1.42}$	$\textbf{10.92} \pm \textbf{0.53}$
LSTM-SPCNN	135M	$\textbf{11.67} \pm \textbf{0.80}$	$\textbf{9.34} \pm \textbf{0.23}$
MuZero	54M	4.4 ± 0.4	8.5 ± 0.1
SEA	1.5M	$\textbf{1.22} \pm \textbf{0.13}$	$\textbf{0.63} \pm \textbf{0.08}$

Our method outperforms all the baselines in both metrics.

Results

Our method is the only one capable of discovering all 22 achievements.

Conclusion

Model-free algorithms can possess the strong capability to discover hierarchical achievements via **self-supervised learning**.

- Paper: https://arxiv.org/abs/2307.03486
- GitHub: https://github.com/snu-mllab/Achievement-Distillation