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» Geodesics in 3D Geometry Processing et

» A curve representing the shortest path between two points on a surface

Euclidean '-.‘
distance A\

=" Geodesic
distance

(a) flight paths travel along an arc (b) shortest path along the surface

> Wide Applications
» Shape analysis
Correspondence

Deformation

Texture mapping
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Background Introduction

> Previous Works

» Methods based on discrete wavefront propagation or geodesic graphs

v' Advantages: high-quality geodesics; arbitrary mesh triangulation
v Disadvantages: computational inefficiency; cumbersome pre-computation

» Methods based on partial differential equation

v' Advantages: flexibility; efficiency; ease of implementation

v Disadvantages: sensitive to the quality of mesh triangulation

» Task Objectives

» Encode geodesic distance and path fields using neural implicit representations
v' Compact storage

Fast query speed

v
v" Generalizable to unseen shapes/categories
v

Flexible for various data formats (e.g., mesh, point cloud)
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> Problem Formulation k‘

» Given a pair of source and target query points, the neural network is trained to output their geodesic distance and shortest path.

{d: cs—)t} - N@ (qs; Qt)

v’ paired input queries: 3D points located on the underlying surface
v' geodesic distance: a scalar value d € Rt

: : : M—1
v'shortest path: discretized as an ordered sequence of 3D points Cgs_,+ € RMX3 ¢y = {Pm}mzo
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Ground-Truth Curve Points
Our Predicted Curve Points




Proposed Methodology

» Overfitted Working Mode

>
>
>

>

(1) Embed each 3D query point into the high-dimensional latent space
(2) Regress the geodesic distance value from the absolute feature difference
(3) Generate shortest path points through curve deformation

v (@) initial line segment

v' (b) feature guidance

v (c) curve points generation

(4) Regress the signed distance value from each query point embedding
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_ regress feature-space
@ source geodesicquery ¢ difference
@ target geodesic query signed distance s’ € R id e RT)
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guidance vector line primitive

Point-Wise MLPs
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» Generalizable Working Mode *bot
» Replace the original query point embedding with a feature extractor
v' (a) autodecoder-based (i.e., DeepSDF-like)
v" (b) transformer-based

v" (c) graph-based

“No need to change”

A query point
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embedding

Point-Wise MLPs
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(a) Autodecoder-based (AutoDec) (b) Point Transformer-based (PointTr) (c) Graph Convolution-based (GraphConv)
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> Loss Functions %00°

» Supervision of signed and geodesic distances

luaisn = |1 = 5ll, lyaion = ||d— d

1

» Supervision of shortest paths
Espath — ”Cs—>t — 63—)t”1

» Consistency constraint of curve lengths

M—-1 M—-1
lecl = Z (lPm — ﬁm—lﬂz) - Z (lpm — pm—le)
m=1 m=1 1

» Distribution constraint of curve points

1 M-1 where N : R® — R represents an independent neural model overfitted on the given shape for the
Lacp = — Z |N¢,(pm)| fitting of signed distance fields in advance, whose network parameters are fixed. Given an arbitrary
M m—0 spatial query, N;, outputs a scalar of the corresponding signed distance value, offering a natural way

of constraining the generated curve points in a differentiable manner.
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» Results of Single-Source All-Destination (SSAD) Querying and SDF Fitting

Mesh | Chamfer-L, (x10~2)

armadillo 1.366
bimba 1.301
» nail 0.354
nail bunny 1.559
cow 0.941
dragon 1.319 3
Table 1: Comparison of geodesic representation accuracy and time efficiency for SSAD querying. fa“diSIf 0.822 @5 % ﬁ
Mesh |#V(K)| T Running Time (ms) of SSAD Query Mean Relative Error (%) heptoroid 2244 - L o N
VTP [34]| HM [10][fDGG [2] [NeuroGE| HM [10][fDGG [2] [NeuroGF maxplanck 1.434 Figure 13 Visulzation of mesh deduced from Newro G
armadillo | 173 | 13| 1778 | 194 | 59 05 | 103 | 059 | 05 bucket 183
bimba 75 | 1.1 985 82 20 0.5 0.67 0.57 0.46 . . X
bucket 35 141 500 18 16 0.5 335 0.96 0.18 Table 2: Chaplfer-Ll errors between ground-truth
bunny 35 |14 374 29 10 05 087 0.58 0.44 and our predicted shortest path points.
cow 46 | 1.6 593 28 11 0.5 2.19 0.57 0.51
dragon | 436 |12.7| 6209 246 145 0.7 10.6 0.46 0.68 . ) )
fandisk 20 |14 359 14 4 05 0.88 0.66 0.35 Table 5: Chamfer-L, (x107%) errors between ground-truth and our predicted shortest path points
heptoroid | 287 | 2.6 | 5789 212 86 0.6 1.75 0.48 0.87 after post-processing.
maxplanck| 49 | 12| 797 33 11 0.5 0.79 0.57 0.39 armadillo bimba nail bunny cow dragon fandisk heptoroid maxplanck bucket || average
nail 24 | 4.6 16 1.4 0.6 0.4 2.71 0.42 0.50 1.131 1.126 0347 1.325 0804 1.070 0.766 1.994 1.248 1.079 [ 1.09
¥ — 088 Table 9: Mean L; errors between our predicted and ground-truth signed distances.
B EEE'EE‘ Mesh  |armadillo| bimba | bucket | bunny | cow | dragon | fandisk | heptoroid | maxplanck | nail
28 % Cimnon Ly (x107%) | 1.22 [ 0.97 | 0.68 | 0.97 |0.86| 1.28 [ 0.67 | 1.01 | 1.03 |0.45
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Figure 6: Statistics of SSAD geodesic distance querying with different network complexity. Figure 12: Experimental evaluations on large-scale real-world meshes (with up to 2 million vertices).
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» Performances of Generalizable NeuroGF %o

Table 3: MRE (%) performances of generalizable NeuroGF learning frameworks equipped with
different global shape feature extractors, including: (a) AutoDec, (b) PointTr, and (c¢) GraphConv.

(a)  SN-Airplane SN-Chair SN-Car|| (b) SN-8x50 SN-5x50| ()  SN-8x50 SN-5x50
AutoDec 3.03 3.91 278 |[PointTr 328 4.16 |[GraphConv ~ 2.94 3.55

> Ablation Studies

Table A7: Ablation studies on different variants of our technical implementations, where “variant (1)
means adding position encoding before fed into FC layers for query point feature embedding, “variant
(2)” means replacing L loss with Lo loss for supervisions, and “variant (3)” means computing

Chamfer distance between generated and ground-truth curve points of shortest paths ¢, and Cc_,¢

for the formulation of £s;.¢1 (Eq. (8) in the paper).

Table 4: Influences of different learning components and supervision objectives, where the results
are averaged on all testing shapes. The right two columns show the representation accuracy of our
predicted geodesic distances and shortest paths (the lower, the better). The averaged statistics of our
full implementation in terms of the two metrics are 0.49% and 1.25 x 10~2. In particular, we mark
the relative change within each bracket to facilitate comparison.

Bogist  Bepath By leat  laen | Mean Relative Error (%) Chamfer-L, (%102 ; ; dragon heptoroid
a,; t path  DBggig 1 Lacp | : (%) l); . (Tl()( - ) Implementation Variants MRE— Chamfer-L, MRE — Chamfor-I,
X 0.61 (10.12) L (0) Original Implementation 0.68 1.319 0.87 2.244
X 0.57 (1 0.08) 1.31 (1 0.06) (1) Adding PosEnc 0.62 1.253 0.79 1.921
X 0.52 (1 0.03) 135 (1 0.10) (2) L Supervisions 0.71 1.345 0.88 2227
X 0.50 (1 0.01) 1.38 (1 0.13) (3) Chamfer Loss for {spatn 0.66 1.286 0.82 2.149
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THANKS FOR LISTERNING!
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