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3D Instance Segmentation problem




2D-t0-3D lifting of 2D Segmentations
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2D semantic and instance (untracked) segmentations



Challenge - multi-view consistency

Semantic segments Instance segments
(ideally Multi-view consistent) (NOT Multi-view consistent)



Contrastive learning of embeddings




Contrastive learning of pixel embeddings




Contrastive learning of pixel embeddings

-

= ~
- “‘,‘ // S
S \
X /! _ N
! \
[ 2% I
\ !
/
/
7’

7
\




Grounding object embeddings in 3D




Grounding object embeddings in 3D




Contrastive Lift framework (simple version)
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Contrastive Lift framework (simple version)
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Contrastive Lift framework (slow-fast version)
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Contrastive Lift framework (slow-fast version)
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Messy Rooms dataset

Semi-realistic dataset created using Kubric.
Features scenes with up to 500 objects per scene.
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Physically realistic static 3D
scene with N objects from
Google Standard Objects
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Dataset link: https://figshare.com/s/b195ce8bd8eafe79762b

GT labels DETIC preds

GT RGB, GT instance IDs, and
instance segments from Detic


https://github.com/google-research/kubric
https://figshare.com/s/b195ce8bd8eafe79762b

Qualitative results — ScanNet
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Qualitative results — ScanNet

Panoptic Lifting
(CVPR ‘23)

Chairs segmented
as distinct objects

X Chairs confused
as same object




Qualitative results — Messy Rooms dataset

Detic Panoptic Lifting
(2D segmenter) (CVPR ‘23)




Qualitative results — Messy Rooms dataset

Detic Panoptic Lifting
(2D segmenter) (CVPR 23)




Comparison with recent works

ScanNet performance
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Performance (Scalability)

Messy Rooms dataset
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vanilla v/s
slow-fast

Vanilla Contrastive

Slow-Fast Contrastive
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Visualization of centroids

Predicted labels Centroid 1 Centroid 2

Centroid 3 Centroid 4
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Visualization of centroids

Predicted labels Centroid 1 Centroid 2 Centroid 3 Centroid 4
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View 1

View 2

Objects or clusters are well-separated on a 3D level, even under heavy occlusion.




Summary

Novel method to lift 2D predictions to 3D for instance segmentation

o Embeddings “grounded in 3D” - Knowledge of number of objects NOT required

o More efficient and scalable than Hungarian Matching based methods
As a byproduct - leads to tracked and higher quality 2D instance segmentations
New “Messy Rooms” benchmark for scalable 3D instance segmentation

X Only works on static scenes

X Relies on accurate geometry reconstruction
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Poster Location: Great Hall & Hall B1+B2 #325
Date: 13 December, 5PM
Webpage: https://www.robots.ox.ac.uk/~vgg/research/contrastive-lift
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