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» Spurious correlations are ubiquitous in the real world 1. Comparison between Robust RL (DRO) and RSC-MDP Distraction correlation is between task-relevant and task-irrelevant portions of
the state, where the task-irrelevant portion is distraction to the policy
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- % cars on the road during the Both portions are important for completing the task.

e Agtm; daytime and few cars at night. small o small 0 |arge o Lif Stack - Door

This is mainly caused by the
human activity, which is
usually not a prior knowledge
to autonomous vehicles.
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Our formulation (SC-MDP) » Our SC-MDP: besides current state s, We estimate the causal graph between state + action and next state. % gl o
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Empirically, we propose an algorithm based on the SAC agent.
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importance factors about the real world task. Dynamic Model In shifted environments, RSC-SAC is robust to spurious correlations.
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