On the Ability of Graph Neural Networks to Model Interactions Between Vertices

Noam Razin

Joint work with Tom Verbin & Nadav Cohen

Tel Aviv University

NeurIPS 2023

Graph Neural Networks (GNNs)

Neural networks purposed for modeling interactions over graph data

Graph Neural Networks (GNNs)

Neural networks purposed for modeling interactions over graph data

Vast majority of GNNs follow the message-passing paradigm

Fundamental Question: Expressivity — which functions can GNNs realize?

Fundamental Question: Expressivity — which functions can GNNs realize?

(e.g. Xu et al. 2019, Morris et al. 2019, Maron et al. 2019, Keriven & Peyré 2019, Chen et al. 2019, Dehmamy et al. 2019, Garg et al. 2020, Loukas 2020, Chen et al. 2020, Azizian & Lelarge 2021, Geerts & Reutter 2022, Zhang et al. 2023)

Fundamental Question: Expressivity — which functions can GNNs realize?

(e.g. Xu et al. 2019, Morris et al. 2019, Maron et al. 2019, Keriven & Peyré 2019, Chen et al. 2019, Dehmamy et al. 2019, Garg et al. 2020, Loukas 2020, Chen et al. 2020, Azizian & Lelarge 2021, Geerts & Reutter 2022, Zhang et al. 2023)

Limitations of Existing Analyses

Fundamental Question: Expressivity — which functions can GNNs realize?

(e.g. Xu et al. 2019, Morris et al. 2019, Maron et al. 2019, Keriven & Peyré 2019, Chen et al. 2019, Dehmamy et al. 2019, Garg et al. 2020, Loukas 2020, Chen et al. 2020, Azizian & Lelarge 2021, Geerts & Reutter 2022, Zhang et al. 2023)

Limitations of Existing Analyses

(1) Often treat regimes of unbounded width or depth

Fundamental Question: Expressivity — which functions can GNNs realize?

(e.g. Xu et al. 2019, Morris et al. 2019, Maron et al. 2019, Keriven & Peyré 2019, Chen et al. 2019, Dehmamy et al. 2019, Garg et al. 2020, Loukas 2020, Chen et al. 2020, Azizian & Lelarge 2021, Geerts & Reutter 2022, Zhang et al. 2023)

Limitations of Existing Analyses

- (1) Often treat regimes of unbounded width or depth
- (2) Do not formalize ability to model interactions between vertices

Fundamental Question: Expressivity — which functions can GNNs realize?

(e.g. Xu et al. 2019, Morris et al. 2019, Maron et al. 2019, Keriven & Peyré 2019, Chen et al. 2019, Dehmamy et al. 2019, Garg et al. 2020, Loukas 2020, Chen et al. 2020, Azizian & Lelarge 2021, Geerts & Reutter 2022, Zhang et al. 2023)

Limitations of Existing Analyses

- (1) Often treat regimes of unbounded width or depth
- (2) Do not formalize ability to model interactions between vertices

Q: How do graph structure and GNN architecture affect modeled interactions?

Widely used measure for the interaction modeled across a partition of input variables

Widely used measure for the interaction modeled across a partition of input variables

vertices of an input graph

Widely used measure for the interaction modeled across a partition of input variables

vertices of an input graph

Measure of entanglement in quantum mechanics

Widely used measure for the interaction modeled across a partition of input variables

vertices of an input graph

Measure of entanglement in quantum mechanics

Analyses of convolutional, recurrent, and self-attention NNs

(e.g. Cohen & Shashua 2017, Levine et al. 2018;2020, **R** et al. 2022)

 $L - \mathsf{GNN}$ depth

 $WI(\mathcal{I}) := \# \text{ length } L - 1 \text{ walks from boundary}$

 $L - \mathsf{GNN}$ depth

 $WI(\mathcal{I}) := \# \text{ length } L - 1 \text{ walks from boundary}$

Theorem

Theorem

For a depth L GNN of width D, and subset of vertices \mathcal{I} :

Theorem

For a depth L GNN of width D, and subset of vertices \mathcal{I} :

$$sep(GNN; \mathcal{I}) = D^{\mathcal{O}(\mathbf{WI}(\mathcal{I}))}$$

Theorem

For a depth L GNN of width D, and subset of vertices \mathcal{I} :

$$sep(GNN; \mathcal{I}) = D^{\mathcal{O}(\mathbf{WI}(\mathcal{I}))}$$

* Nearly matching lower bounds

Theorem

For a depth L GNN of width D, and subset of vertices \mathcal{I} :

$$sep(GNN; \mathcal{I}) = D^{\mathcal{O}(\mathbf{WI}(\mathcal{I}))}$$

* Nearly matching lower bounds

Walk index of a partition controls strength of interaction

Theorem

For a depth L GNN of width D, and subset of vertices \mathcal{I} :

$$sep(GNN; \mathcal{I}) = D^{\mathcal{O}(\mathbf{WI}(\mathcal{I}))}$$

* Nearly matching lower bounds

Walk index of a partition controls strength of interaction

Theory applies to GNNs with product aggregation

Theorem

For a depth L GNN of width D, and subset of vertices \mathcal{I} :

$$sep(GNN; \mathcal{I}) = D^{\mathcal{O}(\mathbf{WI}(\mathcal{I}))}$$

* Nearly matching lower bounds

Walk index of a partition controls strength of interaction

Theory applies to GNNs with product aggregation

Experiment: Implications of theory apply to GNNs with ReLU non-linearity (GCN, GAT, GIN)

Edge Sparsification: Remove edges to reduce compute/memory costs

Edge Sparsification: Remove edges to reduce compute/memory costs

Algorithm: Walk Index Sparsification (WIS)

Greedily prune edge whose removal harms walk indices the least

Edge Sparsification: Remove edges to reduce compute/memory costs

Algorithm: Walk Index Sparsification (WIS)

Greedily prune edge whose removal harms walk indices the least

WIS outperforms existing methods while being simple & efficient

Edge Sparsification: Remove edges to reduce compute/memory costs

Algorithm: Walk Index Sparsification (WIS)

Greedily prune edge whose removal harms walk indices the least

WIS outperforms existing methods while being simple & efficient

Theory

Walk index of a partition controls strength of interaction a GNN can model

Theory

Walk index of a partition controls strength of interaction a GNN can model

Practical Application

WIS: simple & efficient edge sparsification algorithm that outperforms alternative methods

Theory

Walk index of a partition controls strength of interaction a GNN can model

Practical Application

WIS: simple & efficient edge sparsification algorithm that outperforms alternative methods

Going Forward: studying modeled interactions may be key for

Theory

Walk index of a partition controls strength of interaction a GNN can model

Practical Application

WIS: simple & efficient edge sparsification algorithm that outperforms alternative methods

Going Forward: studying modeled interactions may be key for

Understanding aspects beyond expressivity (e.g. generalization)

Theory

Walk index of a partition controls strength of interaction a GNN can model

Practical Application

WIS: simple & efficient edge sparsification algorithm that outperforms alternative methods

Going Forward: studying modeled interactions may be key for

- Understanding aspects beyond expressivity (e.g. generalization)
- Improving performance of GNNs beyond edge sparsification

Theory

Walk index of a partition controls strength of interaction a GNN can model

Practical Application

WIS: simple & efficient edge sparsification algorithm that outperforms alternative methods

Going Forward: studying modeled interactions may be key for

- Understanding aspects beyond expressivity (e.g. generalization)
- Improving performance of GNNs beyond edge sparsification

Thank You!