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Q: How do graph structure and GNN architecture affect modeled interactions?
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« Measure of entanglement in quantum mechanics
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» Analyses of convolutional, recurrent, and self-attention NNs
(e.g. Cohen & Shashua 2017, Levine et al. 2018;2020, R et al. 2022)
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Definition: Walk Index (WI) of a Partition of Vertices

____________

O .' O O | O L — GNN depth
A | ? =
o—0—§ . WI(Z) := #length L — 1 walks from boundary
boundary
walk #1 walk #2 walk #48

D —

Example: length two walks
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Theorem
For adepth L GNN of width D, and subset of vertices 7 :
sep(GNN;Z) = DOWILZ))

* Nearly matching lower bounds

____________

O ® Walk index of a partition controls strength of interaction

Theory applies to GNNs with product aggregation

____________

Experiment: Implications of theory apply to GNNs
with ReLU non-linearity (GCN, GAT, GIN)
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Thank You!

* |Improving performance of GNNs beyond edge sparsification



