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Introduction

Spatial-Temporal Predicate In our paper, we extend the above static predicates to spatial-temporal

predicates, which include spatial-temporal property predicates and spatial-temporal relation predi-
cates.

Specifically, the spatial-temporal property predicates are defined as
X as€x---2CxT x5 {0,1}.

We will consider spatial-temporal logic rules where the body part contain spatial-temporal predicates
as relation constraints. For example, a sensible rule will look like

f :}fTurnAround(C; t; 5) — XPickUpKey(C, t; S) /\
RIHFTOM((CI: t, S,): (Cv t, S)) /\ RBehind((Cﬁv ¢, S”): (C: L, S))

where ¢ € Cpersons € € Chlock, and ¢’ € Cyey. In general, the spatial-temporal logic rule in our paper
is defined as a logical connectives of predicates, including property predicates and spatial-temporal
relation predicates,

f : Y('U) T /\ Xpropcrry('vf) /\ Rspatial—tcmporal('vﬂg 'U) (1)

Xpmperty € Xf Rspati al-temporal ERf

where Y (v) is the head predicate evaluated at the entity-time-location triplet v, A’y is the set of

property predicates defined in rule f, and R y denotes the set of spatial-temporal relation predicates
defined in rule f.

Figure 1: Illustration of feature
construction using a simple logic
formula with temporal relation
predicate (t1 < t2), f : Y +
A A BAC A (ABefore B). The
rule defines the template to gather
combinations of the body predi-
cate history events. Here pred-
icate A has 2 events and predi-
cate B has 1 event, the tempo-
ral relation constraint would lead
to valid combinations (also called

“paths"). This type of feature

construction can be extended to
spatial-temporal cases, where we
count the valid paths as the fea-
ture.



Introduction

Given the rule set Fx, we model the probability of the event « as a log-linear function of
the features, 1.e.,

p(slo, He) s exp (D wy - dylilv, He) ) 3)

FeFx

where w = [wf |[f€F > 0 are the learnable weight parameters associated with each rule.
All the model parameters can be learned by maximizing the likelihood, which can be
computed using the above Eq. (3)

max O(0, w) = E(x,v,24,) [10g Ep, [pw (|, Ht)]]- (4)

6,w

Our goal 1s to maximize the likelihood of the observed human action events {Ii(i) }i=1,...n. Using the
chain rule, we have

log pu ({£“}i=1,....n) = D log pu (@ |01, Hi-n). (5)

=1

We deploy Transformer-based framework to model the rule generator pg. We define the distribution
of a set of rules as follows:

pa(z | U?Ht) — \II(Z|N7 TT&HS@(U,Ht)), (8)

B ts ts
iy @ C

X
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Result

Table 2: Quantitative results (ADFEyy/FDFEyy, and accuracy) of trajectory prediction in NBA
dataset. The bold/underlined font represent the best/second best result.

VAE

1.0s |0.38/0.48 0.45/0.59 0.41/0.52 0.48/0.61 0.45/0.53 0.49/0.66 0.45/0.56 0.30/0.40
2.0s |0.63/0.93 0.76/1.06 0.67/0.94 0.76/1.08 0.72/0.96 0.77/1.11 0.75/0.98 0.58/0.88
3.0s |0.94/1.34 1.06/1.40 0.98/1.35 1.06/1.43 1.00/1.39 1.11/1.46 1.03/1.41 0.87/1.31
4 Os |1.17/1.61 1.32/1.74 1.18/1.63 1.35/1.78 1.19/1.66 1.37/1.79 1.23/1.67 1.13/1.60
0.69 0.65 0.70 0.68 0.69 0.64 0.65 0.73

Flgure 4: Estimated distributions for each player’s intention in cartesian space.
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Visualization

. E Player A Rule @: Left(B,A) ARight(C.A) AFront(D.A)—Pass(A.B)
Y ¢ Explanation:
i = * Player A is carrying the ball
D [y * Player A is defended by player C and player D
A * The partner B is on the left of player A
o4 * Player A passes the ball to player B
G
. Player B Rule @: Left(E.B) ARight(D.B)—Go_Front(B)
B L Explanation:
o,/ % °* Player E and player F is moving to the player B
D * Player B is defended by player E on left side
A .. * Player B is defended by player D on right side
\ ' © 1 * Player B goes front and carry the ball
5 ‘;'3 . Player B Rule ®: Left(E,B) ARight(G,B) AFront(F,B)—Shoot(B)
“Eanchegs Explanation:
D ¥5:4 | o Player B is defended by player E on left side
‘\-F.V? L G + Player B is defended by player G on right side
e ™. Player B is defended by player F on front side

* Player B shoots at the basket

®/® basketball player
®/ basketball

Figure 5: Visualization and explanation of logic rules in NBA dataset.
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