Normalizing flow neural networks by JKO
scheme

Chen Xu!
joint work with Xiuyuan Cheng? and Yao Xie!

1 School of Industrial and Systems Engineering,
Georgia Institute of Technology

2 Department of Mathematics, Duke Unversity

1/14

Goal

[V o\
e Improve the design and training of ‘
normalizing flows. Namely, invertible

p(F1(2)
p(f}(2)

/YN

!

AR

(a) JKo-iFlow (b) Usual CNF

transformation of X < Z given samples
from Px.

e Allow efficient sampling from Px and
likelihood estimation log p(X).

e More computational and memory efficient

than existing methods.
Figure 1:

X < 2,7 ~N(0,1).

2/14

Mathematical background

@ Normalizing flow: density evolution of p(x,t), with
p(2,0) = px and lims_,o p(,t) = pz ~ N(0, Iy).

3/14

Mathematical background
@ Normalizing flow: density evolution of p(x,t), with
p(2,0) = px and lims_,o p(,t) = pz ~ N(0, Iy).

@ Non-unique flow: we consider flow induced by ODE of
z(t) ~ p(z,t)

da(t)/dt = (1), 1) (1)
—>x(t):x(0)+fo F(x(s), s)ds. 2)

3/14

Mathematical background

@ Normalizing flow: density evolution of p(x,t), with
p(2,0) = px and lims_,o p(,t) = pz ~ N(0, Iy).

@ Non-unique flow: we consider flow induced by ODE of
z(t) ~ p(z,t)

da(t)/dt = (1), 1) (1)
—>x(t):x(0)+fo F(x(s), s)ds. 2)

@ Transport regularization: T = fol B p(ylf (1) |dt.
Recovers the Wasserstein-2 optimal transport under the
Benamou-Brenier formula [Villani 2009].

3/14

Mathematical background (cont.)

@ Flow induced by ODE of z(t) ~ p(x,t)

da(t)[dt = f(x(t),1) (1)

@ Normalizing flow models learn f using neural networks fj.

4/14

Mathematical background (cont.)

@ Flow induced by ODE of z(t) ~ p(x,t)
dx(t)/dt = f(x(t),1) (1)

@ Normalizing flow models learn f using neural networks fj.

@ Specifically, the objective is

min KL((Zy)gpxllpz) + R(6). (2)

@ Ty(x)=x+ fol fo(z(s),5),2(0) = x;
Ty is the push-forward operation with (Txp)(A) = p(T~*(A)) for a
measureable set A.

4/14

Mathematical background (cont.)

@ Flow induced by ODE of z(t) ~ p(x,t)

da(t)[dt = f(x(t),1) (1)

@ Normalizing flow models learn f using neural networks fj.

@ Specifically, the objective is

min KL((Zy)gpxllpz) + R(6). (2)

@ Ty(x)=x+ fol fo(z(s),5),2(0) = x;
Ty is the push-forward operation with (Txp)(A) = p(T~*(A)) for a
measureable set A.

@ (2) is equivalent to maximizing log p(X) up to constants
[Onken et al., 2021].

4/14

Current approaches

e Continuous normalizing flow (CNF) [Grathwohl et al., 2019, Onken
et al., 2021] based on Neural ODE [Chen et al., 2019].

5/14

Current approaches

e Continuous normalizing flow (CNF) [Grathwohl et al., 2019, Onken
et al., 2021] based on Neural ODE [Chen et al., 2019].
e Most existing continuous flows pre-specify the number of blocks L
to be trained

— Namely, the integral from [0, 1] is broken into a sequence of L
smaller integrals each with fy,, or the model fy itself is a composition of L

smaller ones of identical architecture.

5/14

Current approaches

e Continuous normalizing flow (CNF) [Grathwohl et al., 2019, Onken
et al., 2021] based on Neural ODE [Chen et al., 2019].
e Most existing continuous flows pre-specify the number of blocks L
to be trained

— Namely, the integral from [0, 1] is broken into a sequence of L
smaller integrals each with fy,, or the model fy itself is a composition of L
smaller ones of identical architecture.
e Challenges are

— Design: how to specify L.

— Computation: joint training of all L blocks.

— Memory: samples are passed through all L blocks.

5/14

Main contribution

@ Introduce block-wise training of CNF models, where each block

is allowed simpler architecture.
o Efficient training with less computation and memory cost.

o Better generative performance and likelihood estimation vs

CNF and diffusion models on simulated and real data.

6/14

Proposed JKO-iFlow

e Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at pg = pg € P, with step
size h > 0, the JKO scheme at the k—th step is

1

Pt = argmin KL(p[[pz) + W3 (pr, p).- (1)
peP 2h

7/14

Proposed JKO-iFlow

e Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at pg = pg € P, with step
size h > 0, the JKO scheme at the k—th step is

, 1
P+ = argmin KL(p| [pz) + = W3 (pk, p)- (1)
peP 2h

e It is equivalent to solve for the following transport map:

1
Tier = argmin KU(Typl[p2) + o Bapelo-T@)I% (2)
T:R-Rd

7/14

Proposed JKO-iFlow

e Our JKO-iFlow is inspired by the Jordan-Kinderleherer-Otto
(JKO) scheme [Jordan et al., 1998]: starting at pg = pg € P, with step
size h > 0, the JKO scheme at the k—th step is

, 1
P+ = argmin KL(p| [pz) + = W3 (pk, p)- (1)
peP 2h

e It is equivalent to solve for the following transport map:

1
Tier = argmin KU(Typl[p2) + o Bapelo-T@)I% (2)
T:R-Rd

e Theoretical analyses of solving (1), which is the W5 proximal GD
problem, are recently presented in [Cheng et al., 2023].

7/14

Proposed JKO-iFlow (cont.)

o Let k-th block Ty, (z) =z + [, fo, (x(s),s) with parameters 6.

8/14

Proposed JKO-iFlow (cont.)

o Let k-th block Ty, (z) =z + [, fo, (x(s),s) with parameters 6.
e Using the instantaneous change-of-variable formula [Chen et al,,
2018], we can show that up to constants

KU(To) p192) = B [1T, (D = [0 o, (a(5),)]

8/14

Proposed JKO-iFlow (cont.)

o Let k-th block Ty, (z) =z + [, fo, (x(s),s) with parameters 6.
e Using the instantaneous change-of-variable formula [Chen et al,,
2018], we can show that up to constants

KU(To) p192) = B [1T, (D = [0 o, (a(5),)]

e Thus, we train the k-th block given the trained (k —1)-th block.
e The full model Ty =Ty, o...oTy,, where (Tp)upx ~ N (0, 14).

8/14

Proposed JKO-iFlow (cont.)

o Let k-th block Ty, (z) =z + [, fo, (x(s),s) with parameters 6.
e Using the instantaneous change-of-variable formula [Chen et al,,
2018], we can show that up to constants

KU(To) p192) = B [1T, (D = [0 o, (a(5),)]

e Thus, we train the k-th block given the trained (k —1)-th block.
e The full model Ty =Ty, o...oTy,, where (Tp)upx ~ N (0, 14).

AV,

Figure 2: Toy example with 4 trained blocks. Px = two moons.

8/14

Proposed JKO-iFlow (cont.)

o Benefits:
— Simpler design and easier training of fy, .
— Allow stopping criterion to determine number of blocks.
— No sampling as diffusion models or variational learning.

9/14

Proposed JKO-iFlow (cont.)

o Benefits:
— Simpler design and easier training of fy, .
— Allow stopping criterion to determine number of blocks.
— No sampling as diffusion models or variational learning.

¢ Additional techniques:
— Reparametrization adjusts the penalty term hj to encourage more
even W block movements, due to exponential convergence by JKO theory.

— Refinement interpolates with hy = hy/c to increase accuracy.

Probability Trajectory

Figure 1: Before and after reparametrization and refinement.

9/14

Experiments—simulation

o Baselines: two discrete-time flow [Berhmann et al., 2019, Xu et al.,
2022], two continuous-time flow [Grathwohl et al., 2019, Onken et al.,
2021}, and one diffusion model [Song et al., 2021].

e Takeaway: JKO-iFlow shows better likelihood estimation and
generative performance.

(a) True data JKO-iFlow (b) FFIORD (c) OT-Flow (d) IGNN (e) ScoreSDE

73 2.79¢-4, MMD-c: 2.73e-4 3.88e-4 1.42e-3 3.14e-3 6.90e-4
NLL 2.64 2.95 3.30 335 32

(f) Fractal tree (g) Olympic rings (h) Checkerboard

7: 3.12¢-4, MMD-c: 2.17e-4 7: 3.16e-4, MMD-c: 2.36e-4 7: 3.09¢-4, MMD-c: 2.70e-4
NLL 220 NLL 1.66 NLL 3.59

Figure 1: Two-dimensional datasets visualized as scatter plots.
10/14

Experiments—simulation (cont.)

e Benefits of reparametrization + refinement.
e Takeaway: improved performance on edges, at which we have few
samples.

W2(pe-1, pe)

X X X
MMD Threshold t: 3.12e-4 MMD: 2.52e-4, NLL: 2.29 MMD: 2.17e-4, NLL: 2.20

[2 a 6 [10 12 1 16
—=— Initial —— Iter2 —+— Iter4 —— refine r-lter 1
—e lter1 —— Iter 3

(a) Per-block W3 over reparameterization iterations and refinement (b) Results at Iter 4 (middle) and r-Iter 1 (right). MMD and NLL
(‘r-Iter 1’ means one reparameterization iteration after refinement). values are shown in the title.

Figure 1: W5 movement before and after reprametrization and refinement,
as well as the generated samples.

11/14

Experiments—real data
e High-dimensional tabular daatsets (d = 6,8, 43, 63).

o Takeaway:

of mini-batc

competitive or better performance under much less number

h SGD with same model capacity.

Data Set Model # Param Training Testing
Time (h) # Batches i (s) Batch size MMD-m MMD-1 NLL
JKOdFlow 76K.L=4 007 076K 35t 10000
OT-Flow 76K 0.36 7.58K 1.71e-1 10000
POWER FFIORD 76K,L=4 067 758K 3181 10000
= IGNN 30K,L=16 029 7.58K 138e-1 10000
ResNet 304K.L=16 041 7.58K 1.95¢-1 10000
ScoreSDE 7 006 758K 28502 10000
ScoreSDE 76K 060 7580K 285¢2 10000
JKO-Flow STK,L=3 005 076K 2631 10000
JKO-iFlow 76K, L=4 0.07 0.76K 3.32e-1 5000
OT-Flow 76K 023 7.60K 1.09e-1 5000
GAS FFJORD 76K, L=4 0.65 7.60K 3.08e-1 5000
d=8 IGNN 304K, L=16 0.34 7.60K 1.6le-1 5000
ResNet 304K.L=16 046 7.60K 2181 5000
ScoreSDE 76K 0.03 7.60K 1.42e-2 5000
ScoreSDE 76K 030 7600K 1422 5000
JKO-iFlow 95K,L=5 009 076K a1sel 5000
JKO:Flow 112K,.L=4 003 034K 361 2000
OTFlow 112K 021 33K 2231 2000
MINIBOONE FFIORD 11ZK,L=4 028 339K 297e.1 2000
d=13 IGNN #8KL=16 063 339K 6691 2000
IResNet 448K, L=16 0.71 3.39K 7.54e-1 2000
ScoreSDE 112K 001 330K 637¢:3 2000
ScoreSDE 112K 0.10 33.90K 6.37e-3 2000
JKO-iFlow 396K, L=4 0.05 1.03K 1.85¢e-1 1000
OT-Flow 396K 0.62 10.29K 2.17e-1 1000
FFIORD ~ 396K.L=4 054 1029K 1891 1000
BSDSI00IGNN 990K, 1 1029K 5.98c-1 1000
IResNet 990K, L 205 1029K 7171 1000
ScoreSDE 396K 001 1029K 3503 1000
ScoreSDE 396K 010 10290K 3503 1000
JKO-iFlow 396K,L=4 008 103K 27601 5000

Figure 1: Quantitative metrics (MMD and NLL)'

12/14

Experiments—real data (cont.)

e Image data in the latent space of pre-trained variational
auto-encoders [Esser et al., 2021].

0069/ V45349 4% 7%

$35r/035 17071 9027

ORA800/ 74357472

(a) Generated MNIST digits. FID: 7.95.

&

(b) Generated CIFAR10 images. FID: 29.10. (c) Generated Imagenet-32 images. FID: 20.10.

13/14

Conclusions

e Propose JKO-iFlow, a neural ODE model that trains each residual
block in a step-wise fashion.
e Leads to improved performance with less computation against flow

and diffusion models.

Xu, C., Cheng, X., and Xie, Y. Normalizing flow neural networks by JKO
scheme. NeurlPS 2023, spotlight.

14/14

