BIONIC VISION LAB

Overview

Goal:

Challenges:
* Limited, noisy patient feedback
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Proposed Solution:

End-to-end framework:
1. Create a forward model of sensory system

latent patient-specific parameters ¢
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Human-in-the-Loop Optimization for Deep Stimulus

Encoding in Visual Prostheses
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* High-dimensional search space (100-1000's params)
» Large patient-to-patient variations in perception

Neural Activity

Perception

* Predicts visual perception (phosphenes) from stimulus
« Captures individual variations with patient-specific vector ¢

Use Bayesian optimization (BO) to tune a deep neural network
stimulus encoder (DSE) based on patient feedback

2. Backpropagate through model to optimize stimuli, dependent on

3. Use Bayesian optimization to learn optimal ¢ for new patients

Black-box optimization of stimulus parameters for prosthesis patients

Human-in-the-Loop Optimization (HILO)

Pretrain deep stimulus encoder (DSE) across patients
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Use preferential Bayesian Optimization to learn ¢ for a
new patient:
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Gaussian process model.

P(¢1 = ¢2)g) = @(9(%) — 9(@))
Acquisition function:

¢1 — argmax E [g(¢)]

¢ p(g|D)
P2 —> argmax  V [P(g(¢) — g(¢1))]
¢ p(g|D)

Tested model variants where:
* the patient’s decision was increasingly random
* the phosphene model was misspecified
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Optimizing based on user preferences Is very robust!

* works even when user’s decision is random 2/3 times

* works even when electrode thresholds are off by 300%
« works even when the phosphene model is incorrect

Results on Simulated Patients

Simulated patients:

 Randomly assigned ¢

« Simulate percept according to forward model

* Choose duel outcome probabillistically, based on distance from
each percept to the target

Baselines:
* Nalve encoder (used by current devices),
 DSE with guess for ¢
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Across 100 simulated patients:
. Better encoding after ~20 duels
. 9X reduction In reconstruction error

N 99% of patients improved from HILO
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Conclusions

Bayesian optimization and deep learning are
complimentary.

Bayesian optimization:

« Adapts to limited, noisy human feedback

* Robust against erroneous modeling assumptions

Deep learning:
* Allows for high dimensional, complex optimization

Could be deployed with commercial prostheses to
periodically recalibrate without requiring a professional

Future work will test HILO on sighted and blind subjects

Broader Impacts:

« Forward models and DSEs have been successfully
used across multiple sensory modalities and could
potentially be adapted for personalization with HILO.

* The latent space of a DNN Is a good target for
Integrating Bayesian optimization into a neural network.
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