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Semi-supervised Learning (SSL) A

e The teacher-student framework utilizes pseudo-labels as supervisory signals
for unlabeled data.

Unlabeled
example

Semi-supervised learning methods incorporate unlabeled data in the model training process.


https://arxiv.org/pdf/2001.07685.pdf
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Semi-supervised Learning (SSL) %,

e The teacher-student framework utilizes pseudo-labels as supervisory signals
for unlabeled data.

Weakly-
augmented Teacher Prediction Pseudo-label
Unlabeled = _ e | ., . . | - S
example Model |—> .-I- - I
- - L L | o e |

Strongly-
augmented

l
Student Prediction /[ H(p, q) ]
oce |~ Balln

FixMatch, Sohn et al. NIPS'20

Among those methods, the teacher-student framework is a widely used approach,
which utilizes pseudo-labels as supervisory signals for unlabeled data.


https://arxiv.org/pdf/2001.07685.pdf
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e The teacher-student framework utilizes pseudo-labels as supervisory signals

for unlabeled data.

Weakly-
augmented

Teacher

Unlabeled
example

Model ]—>

Prediction Pseudo-label

. e

Strongly-
augmented

Student

Model ]—>

Y
Prediction
/[ H(p,q) |

FixMatch, Sohn et al. NIPS'20

Among those methods, the teacher-student framework is a widely used approach,
which utilizes pseudo-labels as supervisory signals for unlabeled data.


https://arxiv.org/pdf/2001.07685.pdf
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Motivation I,

e Challenges in SSL 3D object detection

However, current SSL 3D object detection methods encounter some challenges.



..0\6. L
}. NEURAL INFORMATION
.gi PROCESSING SYSTEMS
o
[ ]

Motivation £,

e Challenges in SSL 3D object detection

o The complexity of generating high-quality pseudo-labels.

For example, generating high-quality pseudo-labels is difficult due to diverse object locations in 3D space.



Motivation

e Challenges in SSL 3D object detection

o The complexity of generating high-quality pseudo-labels.
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o  The model's outputs are the only sources to generate candidates for pseudo-labels.

Unlabeled Data

Point
Cloud

N 2N
Teacher
Encoder J

A
' EMA

Student
Encoder

Point
Features

Pseudo-Labels
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Teacher
Decoder

A
TEVMATTT—
1

Student
Decoder

Also, the model's outputs are the only source to generate pseudo-label candidates.
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Motivation 5,

e Challenges in SSL 3D object detection

o The complexity of generating high-quality pseudo-labels.

o  The model's outputs are the only sources to generate candidates for pseudo-labels.

Unlabeled Data Pseudo-Labels

A

Y

Teacher Point Teacher
Encoder Features Decoder
A A

' EMA TEVMATTT—
1 1

1 1
Student Student
Encoder Decoder

That poses issues when objects remain undetected due to insufficient predictions,
resulting in a lower recall rate.
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Overview of Diffusion-SS3D i ch

Unlabeled Data Pseudo-Labels
Point
Cloud

Y

Teacher | Point
Encoder Features

Unlabeled Data Pseudo-Labels
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Teacher Point Teacher
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p—
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i EMA EMA !
1 ]
Student Student
Encoder Decoder
(a) Prior work (b) Diffusion-SS3D (ours)

Instead, Diffusion-SS3D improves the quality of pseudo-labels through a diffusion model.
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Overview of Diffusion-SS3D i ch

Unlabeled Data Pseudo-Labels
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Student Student I I
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Noisy Gaussian Noisy
Object Sizes Noise Class Labels
(a) Prior work (b) Diffusion-SS3D (ours)

We include random noises to produce corrupted 3D object size and class label distributions
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Overview of Diffusion-SS3D i ch

Unlabeled Data Pseudo-Labels
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(a) Prior work (b) Diffusion-SS3D (ours)

and utilize an iterative denoising process to generate reliable pseudo-labels.
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Extract Rol-features with Noisy Boxes A

Here, we focus on extracting Rol-features from noisy bounding boxes.
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Extract Rol-features with Noisy Boxes X

Point Cloud
p = RNP x3

First, we start with an input point cloud scene containing N, points.
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Extract Rol-features with Noisy Boxes i

Point Cloud Representative
Points and Features

[m c RM><3; f c RMXC]

= RNPX3

The encoder then extracts representative features, where each feature consists of
a potential object center m and its corresponding high-level feature f.



Extract Rol-features with Noisy Boxes

Point Cloud Representative

Points and Features

= RNPX?’
P [m c RMX?); f € RMXC]
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We sample N, noisy object sizes and noisy label distributions from Gaussian noise.



Extract Rol-features with Noisy Boxes

Point Cloud Representative Rol Features

Points and Features fObj c RN,,XC
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Following farthest point sampling, the N, representative points serve as box centers,
combining with noisy sizes to form noisy boxes for gathering Rol-features.
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Extract Rol-features with Noisy Boxes 5t
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Subsequently, we merge the noisy label distributions with Rol-features and input them into the decoder.
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Our decoder is trained to make accurate predictions, even when dealing with Rol-features
extracted from noisy boxes and their associated noisy label conditions.
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Diffusion-SS3D Framework for SSL X,

Let's now demonstrate how our method integrates into the teacher-student framework.
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Diffusion-SS3D Framework for SSL i ch

| p" U pl Input
) Teacher
Weak Encoder

Augmentation

\_ _/

Teacher Model

First, unlabeled data undergo weak augmentation and are fed into the teacher model, producing pseudo-labels.



.o\é. \4
NEURAL INFORMATION
"f PROCESSING SYSTEMS
N

Diffusion-SS3D Framework for SSL 5o

| p" U pl Input
) Teacher
Weak Encoder

Augmentation

_____________________
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. - 1
Gaussian Noise 1

\_ _/

Teacher Model

Concurrently, we generate noisy sizes and label distributions from Gaussian noise.
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Diffusion-SS3D Framework for SSL X,
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Teacher Model

As explained earlier, these noisy features and label information are integrated into the teacher
decoder, enabling it to make initial predictions.
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Diffusion-SS3D Framework for SSL X,

-y Pseudo-
Y Labels
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Teacher Model

We then refine these predictions through iterative diffusion sampling,
yielding high-quality pseudo-labels.
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Diffusion-SS3D Framework for SSL X,

Student Model
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Teacher Model

In contrast, both labeled and unlabeled data undergo strong augmentation
and are fed into the student model for training.
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Generation

Gaussian noise is introduced to ground-truth sizes and class labels to create noisy samples.
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Instead, pseudo-labels are utilized for unlabeled data.
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The student decoder takes these noisy features as input, refining them in a single step to
make accurate predictions.
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Subsequently, we calculate the detection loss to update the student model.
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Finally, the teacher model is updated from the student model through the EMA mechanism.
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Experimental Results £

Table 1: Results on the ScanNet val set with 5%, 10%, 20%, and 100% labeled data.

e 5% 10% 20% 100%
mAP @ 025 mAP @05 mAP @025 mAP@05 mAP @025 mAP @05 mAP @025 mAP @05
VoteNet 279%05  108%06  369%16 18210 46919  275%12 5738 36.0
SESS 320+07  144%07  395%18  198+13 49611  29.0%10 61.3 38.8
3DIoUMatch ~ 40.0£09  225+05 47204 28315 52812  352x1.1 62.9 42.1
Diffusion-SS3D  43.5+02 27903 50314  33.1+15  556+17 36914 64.1 432
Gain (mAP) 3.51 5.41 3.11 4.81 2.81 1.7¢ 121 117
Table 2: Results on the SUN RGB-D val set with 1%, 5% 10%, and 20% labeled data.
Model 1% 5% 10% 20%
mAP @025 mAP @05 mAP @025 mAP@05 mAP@025 mAP@05 mAP@025 mAP @05
VoteNet 83%12 44%04 299%15 105205  389%08 17213 457206 2252038
SESS 20.1+02 5.8+0.3 342420 13110 42111 209203 471207 24512
3DIoUMatch 219+ 1.4 8015 300+19  21.1+17  455%15  288%07 497404  309%02
Diffusion-SS3D  30.9+10 14712 43906  249:03  49.1+0.5 304207 51408 32406
Gain (mAP) 9.01 6.71 491 3.81 3.61 1.61 1.7¢ 1.5¢

We report the results of Diffusion-SS3D on the ScanNet and SUN RGB-D datasets with different
amounts of labeled data.
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Experimental Results £

Table 1: Results on the ScanNet val set with 5%, 10%, 20%, and 100% labeled data.

Model 5% 10% 20% 100%
mAP@ 025 mAP@05 mAP@025 mAP@05 mAP@025 mAP@0.5 mAP @025 mAP @05
VoteNet 279+0.5 10.8 £ 0.6 369+1.6 182+1.0 469+1.9 27.5+1.2 57.8 36.0
SESS 32.0+0.7 144 0.7 395+1.8 198+1.3 49.6 +1.1 29.0+1.0 61.3 38.8
3DIoUMatch 40.0+ 0.9 225+£05 472+04 28315 528+1.2 352+1.1 62.9 42.1

- 3.5+0.2 27.9 + 0.3 503+14 33.1+1.5 55.6 +1.7 369+ 14 64.1
Gain (mAP) 3.57 5.471 3.17 4.87 2.87 1.71 1.21 1.11

Table 2: Results on the SUN RGB-D val set with 1%, 5% 10%, and 20% labeled data.

S 1% 5% 10% 20%
mAP @ 025 mAP@05 mAP @025 mAP@05 mAP@025 mAP@05 mAP@025 mAP@05
VoteNet 18312 44+04 299+15 105+05 389+0.8 7213 45.7%06 225%0.8
SESS 20.1£0.2 58+03 342 +2.0 13.1+ 1.0 421+1.1 20.9 +0.3 47.1+0.7 245+ 1.2
3DIoUMatch 219+ 1.4 8.0+15 39.0+ 1.9 211 £1.9 455+ 1.5 28.8 +0.7 49.7 £ 0.4 30.9 +0.2
Diffusion-SS3D 309 1.0 147 £12 43.9 0.6 24.9 +0.3 49.1+0.5 30.4 + 0.7 514+ 0.8 324+ 0.6
Gain (mAP) 9.01 6.71 4.91 3.81 3.61 1.61 1.71 1.51

Overall, our method performs favorably against state-of-the-art approaches.
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Visualization ool

Here, we visualize how diffusion-SS3D denoise via DDIM sampling step during inference.
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Visualization oo

(a) Input point cloud

In each example, we show (a) the input point cloud.



..cr’%;.&.‘t,
9_. NEURAL INFORMATION
o , PROCESSING SYSTEMS

Visualization I,

(a) Input point cloud  (b) Initial random boxes

(b) The initial bounding boxes obtained by random sampling.
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Visualization ool

(a) Input point cloud  (b) Initial random boxes (c) DDIM

(c) The denoised bounding boxes yielded by DDIM, where those closest to the
ground truth are highlighted in red.
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Visualization ool

(a) Input point cloud  (b) Initial random boxes (c) DDIM (d) Final prediction

(d) The detection results given by our diffusion decoder.
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(a) Input point cloud  (b) Initial random boxes (c) DDIM (d) Final prediction  (e) Ground truth

ok

and (e) the ground-truth bounding boxes.
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Conclusion X,

e We are the first method to utilize the diffusion model for SSL 3D object detection,

treating the task as a denoising process for improving the quality of pseudo-labels.
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Conclusion P

e We are the first method to utilize the diffusion model for SSL 3D object detection,

treating the task as a denoising process for improving the quality of pseudo-labels.

e We introduce the random noise to 3D object size and class label distributions for

producing more plausible pseudo bounding boxes, by a means to integrate the diffusion

model into the teacher-student framework for SSL.
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Conclusion X,

We are the first method to utilize the diffusion model for SSL 3D object detection,

treating the task as a denoising process for improving the quality of pseudo-labels.

We introduce the random noise to 3D object size and class label distributions for
producing more plausible pseudo bounding boxes, by a means to integrate the diffusion

model into the teacher-student framework for SSL.

We demonstrate state-of-the-art performance against existing methods on the ScanNet
and SUN RGB-D benchmarks.
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