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Motivation

a) Real-Time and On-Board motion prediction in urban driving scenario with dense traffic.
b) Agent-Centric SoTA: Good performance. Bad scalability.
c) Online Inference with streaming inputs.
d) Expensive Post-Processing and ensembling.
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Pairwise-Relative Polyline Representation 
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Global Pose p: Where is the polyline?
Local Attribute u: What kind of polyline is it?

Input to the Network:
a) High-dimensional local attribute u. Shared.
b) 3-dimensional relative pose r. Computed from p.

Good Performance: Rotation and translation invariance.
Good Scalability: sharing high-dimensional u.
However, so far it is only exploited by GNNs.



KNARPE: K-nearest Neighbor Attention with Relative Pose Encoding

4

• Based on multi-head dot-product attention.
• Implemented with basic matrix operations: indexing, summation and element-wise multiplication.
• Self-Attention: Local context aggregation like CNN.
• Cross-Attention: Rotated ROI alignment with CNN.

Relative Pose Encoding: 
K-Nearest Neighbor:



HPTR: Heterogeneous Polyline Transformer with Relative 
Pose Encoding
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• Based on KNARPE. 
• Transformers are organized in a hierarchical way.
• Remove redundant attentions.
• Intermediate results can be cached and reused.
• Asynchronous token update during online inference.
• Maps: Day. Traffic Lights: Second. Agents: Millisecond.



Results on Public Leaderboards
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SoTA performance on Waymo Open Motion Dataset among the end-to-end methods 
(no ensemble, no redundant prediction). 
Also, on Argoverse 2 (c.f. our paper) our method compares favorably against other 
end-to-end methods.



Efficiency and Scalability
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• HPTR SC: The scene-centric baseline. The efficiency upper-bound.
• WF (Wayformer) baseline: The agent-centric baseline. SoTA performance.
• Efficiency gain without sacrificing the performance.

• 80% less GPU memory consumption and online inference latency.
• 60% less offline inference latency.
• 40 FPS during online inference with 64 agents by using half precision and caching the map.



Summary
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• KNARPE allows the pairwise-relative representation to be used by Transformers.

• HPTR uses hierarchical architecture to enable asynchronous token update.

• SoTA performance among E2E methods: WOMD and AV2 dataset.

• Good Performance and Good Scalability.
• As accurate as agent-centric methods.

• As efficient as scene-centric methods.

• Real-Time and On-Board Motion Prediction.

• 40 FPS during online inference with 64 agents.

• 80% reduction on online inference latency and GPU memory.

• Code: https://github.com/zhejz/HPTR

https://github.com/zhejz/HPTR

