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Multi-armed Bandits

= Online decision making for T slots.

Choose an action A;

© @ Actions:
Decision-making A €{1,2,-,A}
with UNCERTAINTY
Distributions:
C & {V1, V2, -, V4

Observe a random reward r; sampled from v,,




Classic Views of MAB

= Reg ret Minimization (Lai and Robbins. 1985) = Best Arm Identification (Garivier, et al. 2016)

= Exploration v.s. Exploitation _ i = Sample Complexity

T
mints.t.Pr(@;, =a")>1-6
Regu(T) = TUg — ]Eﬂ zﬂAt ( ! )
_t=1 =
Does not commit to any arm Over-exploration of suboptimal arms
= Online MAB (Auer et al. 2002) = Offline MAB (Rashidinejad et al. 2021)
o UCB bonus LCB penalty
= Optimism = Pessimism

clog(T)
N¢_4(a)

A; = argmax, 7;_,(a) +

What is the fundamental difference between online and offline data? @



What Happens in Real-World Applications

Clinic trials Career choices
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Regret Optimal Best Arm Identification

= Two Goals

= Optimal cumulative regret.

me) min E[7] such that Pr(a # a”) = o(T™1),

nEllro

= Commit to optimal action quickly. where
Reg™ (T) A
= Three Components ) [zo = {n: limsup 10” == z KL = (-

= Exploration e 5 o g (B
= Stopping _ Action
= Action Identification StoP@ Identification
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Can we design an algorithm for ROBAI?

What are the fundamental limits?




EOCP: Explore Optimistically then Commit Pessimistically

21

= Exploration A, = argmax, 7;_,(a) +
N¢_1(a)

= Modified-UCB.

21

= Action Identification G =argmaxg f— (@) =i (a)
t—1\a

= Modified-LCB algorithm.

= Stopping Stop when ¢ =
= Pre-determined Stopping =

] Adaptive StOpping Lower bOlild on the Stop when:
L. max min N;(a) — IN;(a") > 1
minimum reward gap a a'
5 . Action
m’@ Identification
1 2 T T+1 T
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Main Results

= Pre-determined Stopping Time:

Theorem 1. (Pre-determined)
If we choose [ = log(T) + cy+/log(T), the regret of EOCP is bounded:

2
RegEOCP(T) << Z A—logT-I— o(logT).

J:Ag>0

And SCCEOCP(T) = 0(Ag5,logT).
= Adaptive Stopping Time: Constant Optimal Regret

Theorem 2. (Adaptive)
If we choose | = log(T) + cy+/log(T), the regret of EOCP-UG is bounded:

2
Regj:0“F(T) << Z A—logT—I— o(logT).

a
wa:A.>0

min

And SCCEOCP(T) = 0(Axinlog? T).
Sample Complexity Loss




Fundamentality

= Commitment Time Limits for Regret Optimal Algorithms

Theorem 3 (Informal).
For 2-armed Gaussian bandit, for any algorithm m with regret is O(log¢ T) away from optimal, in pre-
determined setting:

lo
SCCH(T) = Q(
in adaptive setting:

2—cC
SCCE(T) = O <M>

AZ

= EOCP matches the LB when A is known a priori.




Comparison to Literature

Bandit Algorithm Sample Complexity

UCB (auer, et al. 2002) —log(T)
TS(Thompson. 1933) glog(T) T N/A
log(T ~
BAI-ETC Garivier, et al. 2016) %log(T) 0 ( Oi(z )> or—h
2 log(T
EOCP ©ours) Zlog(T) 0 < Oi(z )> o)
log?(T
EOCP-UG ous) %log(T) 0 ( OgAZ( )> o(T1)
KL-EOCP - logT 0 _log(D) _ o(T™1
i (©urs) KL(ptz, pq) e KL(uz, 1) ( )
: 2 log(T) )
Lower Bound (Gaussian) 7 log(T) 0| —1z o)

Lower Bound (General)

RLGi, 1) 0 (KL(uz,mV)




Thanks!
Questions?
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