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Problem setting: basic ingredients

The learner faces an action set V = [K]

A graph G = (V, E) over the actions is provided

The player interacts with the environment in a series of T rounds

e At the start, the environment (secretly) picks a sequence of losses
(gt)fG[T]v where ft: V — [07 1]
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Problem setting: interaction protocol and objective

Fort=1...T:

e the learner picks (possibly at random) an action
eV

e the learner suffers and observes (;(1;)

e the learner observes the losses of the actions in
Ng(/I¢) (the neighbourhood of /; in G)

The objective is to minimize the regret:

T T
Rr=E [Z gt(/t)‘| - ,@[ik‘]zﬁt(i)
t=1 t=1
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e The minimax regret is the lowest achievable regret of any strategy
against its worst case environment

e For a given graph, the best known® upper bound is of order

vaTIlnK

The independence number a(G) is the
cardinality of the largest set of nodes no
two of which are neighbours

e The best known?! lower bound is of order vVaT

LAlon et al., 2017.
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State of the art: special cases

However, we know that

e for bandits (v = K): the minimax regret is> © (v KT)
e for experts (a = 1): the minimax regret is> ©(v/ T In K)

2Auer et al., 1995; Audibert and Bubeck, 2009.
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State of the art: special cases

However, we know that

e for bandits (v = K): the minimax regret is> © (v KT)
e for experts (a = 1): the minimax regret is> ©(v/ T In K)

What about intermediate cases?

2Auer et al., 1995; Audibert and Bubeck, 2009.
3Cesa-Bianchi et al., 1993.
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The FTRL rule

At every round t =1,..., T:

o Vie[K] let L,_1(i) = Z;i U5(i) , where (i) is an estimate of
the loss of action / in round s
e Select a distribution over the actions that balances exploitation and

exploration /stability:

K
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where 1 : Ak — R is a regularizer

e Draw /; ~ p;
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The importance-weighted estimator

Forie[K]and t € [T],

(i)
Py(1)

where Py(i) =P(l, € {i} UNg(i) | h,..., le—1) = pe(i) + > jene(y Pel)

@t(i) -

1{/, € {i} UNg(i)}
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The (negative) g-Tsallis entropy regularizer

For g € (0,1), define

Va(P) = 1 i . <1 - Zp(i)">

e with g = 1/2, one can achieve vV KT regret for bandits

e in the limit as g — 1, we recover the (negative) Shannon entropy,
using which we can achieve VaT In K regret

e what if we choose g as a function of a?



g-FTRL: key lemma

FTRL with regularizer 1), (g-FTRL) and the IW estimator satisfies
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g-FTRL: key lemma

FTRL with regularizer 1), (g-FTRL) and the IW estimator satisfies

T K
Rr<—i—+Lp3 Y

7]( t=1 i=1 ZJG{ }UNG()pt(j)

Lemma

Let G be an undirected graph over K nodes. Then, for any p € Ak_1

2—q

and q € [0,1]
K —q
Pt( ) _ S O{(G)q
= 2jetiune() PeU)
Thus, .
Kl-a
Rr<—— +La9T

“n(l-q) 2q



g-FTRL: final bound

Theorem
g-FTRL with

_ 2gKt—a
\/m+2> €[1/2,1) and n= T q)a

1 In(K /a)

satisifes

Rr <2v/eaT (2+ In(K/a))
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The uninformed setting

Consider a variant where

e instead of a fixed graph, the environment selects a sequence of
graphs (G;)eery, where G; = (V, E;)

e the learner observes G; only after selecting /;

State of the art methods* can achieve an upper bound of order

\/Ztll at In K, where a; = a(G;)

With ar = % Z;l oy, utilizing a doubling trick, we can achieve

iat<2+ln< KT)> + log, &t

t=1

4Alon et al., 2017.
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General strongly observable graphs

e The learner only observes ¢;(i) for i € Ng, ()
e For every i € V, at least one of the following holds: i € Ng,(i) or
i€ Ng,(j) forall j # i

o Let Jy={ie V:i¢ Ng(i)and p:(i) > 1/2}, we can recover the
same guarantees using the following loss estimator adapted from
(Zimmert and Seldin, 2021)

£e(7) . .
2.(7) = @l € Ne. (1)} ifieV\J
LOSAI {1 € Ne (i)} +1 ifi € J;

t
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Lower Bounds

Theorem

Pick any o and K such that 2 < o« < K. Then, for any algorithm and
sufficiently large T, there exists a sequence of losses and feedback
graphs Gy, ..., Gr such that ao(G;) = « forall t =1,..., T and

Rt > c/aT log, K

Improves upon the Q(\/(XT) lower bound, however

e not exactly matching
e requires time-varying graphs
e not instance-specific

A more recent work (Chen, He, and Zhang, 2023) shows that for every
a < K their exists a (fixed) graph G with a(G) = « such that

Rt > c@/aTln(K/a)



References i

[§ Cesa-Bianchi, Nicold et al. (1993). “How to use expert advice”. In:
Proceedings of the 25th annual ACM symposium on Theory of
Computing, pp. 382-391.

[d Auer, Peter et al. (1995). “Gambling in a rigged casino: The
adversarial multi-armed bandit problem"”. In: Proceedings of IEEE
36th annual foundations of computer science. |EEE, pp. 322-331.

[§ Audibert, Jean-Yves and Sébastien Bubeck (2009). “Minimax
Policies for Adversarial and Stochastic Bandits.”. In: COLT. Vol. 7,
pp. 1-122.

[ Mannor, Shie and Ohad Shamir (2011). “From bandits to experts:
On the value of side-observations”. In: Advances in Neural
Information Processing Systems 24.

14



References ii

[§ Alon, Noga et al. (2017). “Nonstochastic Multi-Armed Bandits with
Graph-Structured Feedback”. In: SIAM Journal on Computing 46.6,
pp. 1785-1826.

[§ Zimmert, Julian and Yevgeny Seldin (2021). “Tsallis-inf: An optimal
algorithm for stochastic and adversarial bandits”. In: The Journal of
Machine Learning Research 22.1, pp. 1310-1358.

[§ Chen, Houshuang, Yuchen He, and Chihao Zhang (2023). On
Interpolating Experts and Multi-Armed Bandits. arXiv: 2307 .07264
[cs.LG].

15


https://arxiv.org/abs/2307.07264
https://arxiv.org/abs/2307.07264

	Problem Setting
	State of the Art
	q-FTRL
	Extensions
	Lower Bounds

