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Problem Setting



Problem setting: basic ingredients

• The learner faces an action set V = [K ]

• A graph G = (V ,E ) over the actions is provided

• The player interacts with the environment in a series of T rounds

• At the start, the environment (secretly) picks a sequence of losses

(ℓt)t∈[T ], where ℓt : V → [0, 1]
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Problem setting: interaction protocol and objective

For t = 1 . . .T :

• the learner picks (possibly at random) an action

It ∈ V

• the learner suffers and observes ℓt(It)

• the learner observes the losses of the actions in

NG (It) (the neighbourhood of It in G )

The objective is to minimize the regret:

RT = E

[
T∑
t=1

ℓt(It)

]
− min

i∈[K ]

T∑
t=1

ℓt(i)
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State of the Art



State of the art

• The minimax regret is the lowest achievable regret of any strategy

against its worst case environment

• For a given graph, the best known1 upper bound is of order√
αT lnK

√
αT lnK

The independence number α(G) is the

cardinality of the largest set of nodes no

two of which are neighbours

• The best known1 lower bound is of order
√
αT

√
αT

1Alon et al., 2017.
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State of the art: special cases

However, we know that

• for bandits (α = K ): the minimax regret is2 Θ
(√

KT
)

• for experts (α = 1): the minimax regret is3 Θ
(√

T lnK
)

What about intermediate cases?

2Auer et al., 1995; Audibert and Bubeck, 2009.
3Cesa-Bianchi et al., 1993.
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q-FTRL



The FTRL rule

At every round t = 1, . . . ,T :

• ∀i ∈ [K ], let L̂t−1(i) =
∑t−1

s=1 ℓ̂s(i) , where ℓ̂s(i) is an estimate of

the loss of action i in round s

• Select a distribution over the actions that balances exploitation and

exploration/stability:

pt = argmin
p∈∆K

K∑
i=1

p(i)L̂t−1(i) +
1

η
ψ(p)

where ψ : ∆K → R is a regularizer

• Draw It ∼ pt
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The importance-weighted estimator

For i ∈ [K ] and t ∈ [T ],

ℓ̂t(i) =
ℓt(i)

Pt(i)
I
{
It ∈ {i} ∪ NG (i)

}
where Pt(i) = P

(
It ∈ {i} ∪ NG (i) | I1, . . . , It−1

)
= pt(i) +

∑
j∈NG (i)

pt(j)
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The (negative) q-Tsallis entropy regularizer

For q ∈ (0, 1), define

ψq(p) =
1

1− q

(
1−

K∑
i=1

p(i)q

)

• with q = 1/2, one can achieve
√
KT regret for bandits

• in the limit as q → 1, we recover the (negative) Shannon entropy,

using which we can achieve
√
αT lnK regret

• what if we choose q as a function of α?
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q-FTRL: key lemma

FTRL with regularizer ψq (q-FTRL) and the IW estimator satisfies

RT ≤ K 1−q

η(1− q)
+

η

2q
E

T∑
t=1

K∑
i=1

pt(i)
2−q∑

j∈{i}∪NG (i)
pt(j)

Lemma

Let G be an undirected graph over K nodes. Then, for any p ∈ ∆K−1

and q ∈ [0, 1]
K∑
i=1

pt(i)
2−q∑

j∈{i}∪NG (i)
pt(j)

≤ α(G )q

Thus,

RT ≤ K 1−q

η(1− q)
+

η

2q
αqT
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q-FTRL: final bound

Theorem

q-FTRL with

q =
1

2

(
1 +

ln(K/α)√
ln(K/α)2 + 4 + 2

)
∈ [1/2, 1) and η =

√
2qK 1−q

T (1− q)αq

satisifes

RT ≤ 2
√
eαT (2 + ln(K/α))
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Extensions



The uninformed setting

Consider a variant where

• instead of a fixed graph, the environment selects a sequence of

graphs (Gt)t∈[T ], where Gt = (V ,Et)

• the learner observes Gt only after selecting It

State of the art methods4 can achieve an upper bound of order√∑T
t=1 αt lnK , where αt = α(Gt)

With αT = 1
T

∑T
t=1 αt , utilizing a doubling trick, we can achieve

RT ≤ c

√√√√ T∑
t=1

αt

(
2 + ln

(
K

αT

))
+ log2 αT

4Alon et al., 2017.
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General strongly observable graphs

• The learner only observes ℓt(i) for i ∈ NGt (It)

• For every i ∈ V , at least one of the following holds: i ∈ NGt (i) or

i ∈ NGt (j) for all j ̸= i

• Let Jt =
{
i ∈ V : i /∈ NGt (i) and pt(i) > 1/2

}
, we can recover the

same guarantees using the following loss estimator adapted from

(Zimmert and Seldin, 2021)

ℓ̂t(i) =


ℓt(i)
Pt(i)

I {It ∈ NGt (i)} if i ∈ V \ Jt
ℓt(i)−1
Pt(i)

I {It ∈ NGt (i)}+ 1 if i ∈ Jt

12



Lower Bounds



Lower Bounds

Theorem

Pick any α and K such that 2 ≤ α ≤ K. Then, for any algorithm and

sufficiently large T, there exists a sequence of losses and feedback

graphs G1, . . . ,GT such that α(Gt) = α for all t = 1, . . . ,T and

RT ≥ c
√
αT logα K

Improves upon the Ω
(√
αT
)
lower bound, however

• not exactly matching

• requires time-varying graphs

• not instance-specific

A more recent work (Chen, He, and Zhang, 2023) shows that for every

α ≤ K their exists a (fixed) graph G with α(G ) = α such that

RT ≥ c
√
αT ln

(
K/α

)
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