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Motivation
• Regression-based methods: Show remarkable success, especially in terms of distortion-

based metrics (e.g., PSNR). But recover images with fewer details.
• Generative models: Generate more perceptually plausible results. But produce undesired 

artifacts not present in the original images.
• Deblurring: non-uniform blur in real scenarios.

Blurry GT PSNR↑/LPIPS↓ MPRNet 30.96/0.114 DvSR 29.77/0.089
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Motivation
• Therefore, we design HI-Diff, which hierarchically integrates Transformer (Regression-

based) and Diffusion model (Generative) for realistic image deblurring.
• HI-Diff leverages the power of diffusion models to generate prior in compact latent space.
• The generate prior is applied to guide the regression-based deblurring process from multiple 

scales with the hierarchical integration module.

Blurry GT Restormer (SOTA) HI-Diff (ours)
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Framework
• Compositions: Transformer 

and diffusion model.

Transformer
• Hierarchical encoder-

decoder architecture, guided 
by prior (z).

Diffusion model
• Perform in the highly 

compacted latent space to 
generate prior.
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Latent Encoder (LE) 
• Compress the image into a compact latent representation for DM.

Hierarchical Integration Module (HIM)
• Effectively integrate the prior feature and intermediate feature of 

Transformer.

• The multiple-scale prior (𝑧!, 𝑧", 𝑧#) adapts to different scale 
intermediate features with cross-attention:

The overall framework of the proposed HI-Diff is depicted in Fig. 1. The HI-Diff consists of two parts:
Transformer and the latent diffusion model. We adopt Restormer [53], a hierarchical encoder-decoder
Transformer architecture, in our method. Compared with other Transformer networks designed
specifically for image deblurring, Restormer is a general restoration model. Applying this model in
our method can better illustrate the effectiveness of our proposed method. Meanwhile, following
previous practice [10, 35, 51], we train our HI-Diff with a two-stage training strategy, to realize latent
compression and the training of the DM. In this section, we first elaborate on the two-stage training
framework and then illustrate the whole deblurring inference process.

3.1 Stage One: Latent Compression
In stage one, our purpose is to compress the ground truth image into the highly compact latent space,
and utilize it to guide Transformer in the deblurring process. As shown in Fig. 1(a, b), we compress
the ground truth images through a latent encoder (LE) to obtain a compact representation as the prior
feature. Then we integrate the prior feature into Transformer through the hierarchical integration
module (HIM). The prior feature can provide explicit guidance for Transformer, thus increasing the
details of the reconstructed image. Next, we describe these parts in detail.

Latent Encoder. As shown in Fig. 1(b), given the blurry input image IBlur2RH⇥W⇥3 and its
corresponding ground truth counterpart IGT2RH⇥W⇥3, we first concatenate them along the channel
dimension and feed them into the latent encoder (LE) to generate the prior feature z2RN⇥C

0
. Here

H and W represent the image height and width, while N and C
0 are the token number and channel

dimensions of z. Importantly, the token number N is a constant much smaller than H⇥W . The
compression ratio (H⇥W

N
) is much higher than that applied in previous latent diffusion [35] (e.g., 8

times). Therefore, the computational burden of the subsequent latent diffusion model is effectively
reduced. The details of the latent encoder are depicted in Fig. 1(e), which contains L residual blocks.

Hierarchical Integration Module. To effectively integrate the prior feature and intermediate feature
of Transformer, we propose the hierarchical integration module (HIM). As illustrated in Fig. 1(a),
the HIM is placed in front of each encoder and decoder. For each HIM, cross-attention is computed
between the prior and intermediate features for feature fusion. This module allows the information in
the prior feature to be aggregated into features of Transformer.

Specifically, as shown in Fig. 1(d), given the intermediate feature Xin2RĤ⇥Ŵ⇥Ĉ , we reshaped it as
tokens Xr2RĤŴ⇥Ĉ ; where Ĥ⇥Ŵ is spatial resolution, and Ĉ denotes channel dimension. Then
we linearly project Xr into Q2RĤŴ⇥Ĉ (query). Similarly, we project the prior feature zi2RN̂⇥C

0

as K2RN̂⇥Ĉ (key) and V2RN̂⇥Ĉ (value). The cross-attention is formulated as:
Q = WQXr,K = WKzi,V = WV zi,

Attention(Q,K,V) = SoftMax(QKT
/

p
Ĉ) ·V,

(1)

where WQ2RĈ⇥Ĉ , WK2RC
0⇥Ĉ , and WV 2RC

0⇥Ĉ represent learnable parameters of linear pro-
jections without bias. As vanilla multi-head self-attention [46, 9], we separate channels into multiple
“heads” and calculate the attention operations. Note that Fig. 1(d) depicts the situation with a sin-
gle head and omits some details for simplification. Finally, we reshape and project the output of
cross-attention, and add it with Xin to derive the output feature Xout2RĤ⇥Ŵ⇥Ĉ .

Moreover, since the non-uniform blur in real scenarios, the single-scale prior feature cannot adapt
well to complex blurry situations. Therefore, we generate the multiple-scale prior feature {z1, z2, z3}
(where z1=z), by downsampling the prior feature z, as shown in Fig. 1(c). The multiple-scale prior
feature adapts to different scale intermediate features for better fusion. The effectiveness of the
hierarchical integration with the multiple-scale prior feature is demonstrated in Sec. 4.2.

Training Strategy. To ensure the effectiveness of the latent encoder (LE) in constructing the prior
feature, we optimize it jointly with Transformer using the L1 loss function, defined as:

Ldeblur = kIDB � IGT k1, (2)
where IDB is the deblurred image, and IGT represents its corresponding ground truth.

3.2 Stage Two: Latent Diffusion Model
In stage two, a latent diffusion model (DM) is trained to learn to generate the prior feature, that
enhances the deblurring process of Transformer through HIM.
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Ablation
• Prior improves performance.
• Hierarchical Integration is 

effective.
• DM is efficient in highly 

compact latent space.

Method Prior Multi-Scale Joint-training Params (M) FLOPs (G) PSNR (dB) SSIM

Basline % % % 19.13 117.25 31.96 0.9528
Single-Guide ! % ! 21.98 125.39 32.00 0.9534
Split-Training ! ! % 23.99 125.47 30.73 0.9434
HI-Diff (ours) ! ! ! 23.99 125.47 32.24 0.9558

Table 1: Ablation study. We train and test models on the GoPro [28] dataset. Image size is
3⇥256⇥256 to calculate FLOPs. Prior: the prior feature generated by the diffusion model; Multi-
scale: the multi-scale prior feature for hierarchical integration (as opposed to single-scale); Joint-
training: the diffusion model and Transformer are trained jointly in stage two.

4 Experiments
4.1 Experimental Settings
Data and Evaluation. Following previous image deblurring methods, we evaluate our method
on synthetic datasets (GoPro [28] and HIDE [39]) and the real-world dataset (RealBlur [34] and
RWBI [56]). The GoPro dataset contains 2,103 pairs of blurry and sharp images for training and
1,111 image pairs for testing. The HIDE dataset provides testing 2,025 images. The RealBlur dataset
has two sub-set: RealBlur-J and RealBlur-R. Each sub-set consists of 3,758 training pairs and 980
testing pairs. The RWBI dataset contains 3,112 blurry images captured with different hand-held
devices. For synthetic datasets, we train HI-Diff on the GoPro training set and test it on GoPro and
HIDE. Moreover, we further test the GoPro-trained model on RealBlur and RWBI to evaluate the
generalization of our method. For real-world datasets, we train and test HI-Diff on RealBlur datasets,
following previous works [54, 44]. We adopt two common metrics: PSNR and SSIM [49].

Implementation Details. Our HI-Diff consists of two parts: Transformer and the latent diffusion
model. For Transformer, without loss of generality, we apply Restormer [53], a 4-level encoder-
decoder Transformer architecture. From level-1 to level-4, we set the number of Transformer blocks
as [3,5,5,6], the number of channels as [48,96,192,384], and the attention heads as [1,2,4,8]. Besides,
there are 4 blocks in the refinement stage. The channel expansion factor is 2.66. For the latent
diffusion model, the token number N is 16, and the channel dimension C

0 is 256. The latent encoder
contains L=6 residual blocks. We set the total time-step T as 8, and the variance hyperparameters
�1:T constants increasing linearly from �1=0.1 to �T=0.99.

Training Settings. We train our HI-Diff with Adam optimizer [19] with �1=0.9 and �2=0.99. For
stage one, the total training iterations are 300K. The initial learning rate is set as 2⇥10�4 and gradually
reduced to 1⇥10�6 with the cosine annealing [27]. Following previous work [53], we adopt progres-
sive learning. Specifically, we set the initial patch size as 128 and the patch size as 64. We progres-
sively update the patch size and batch size pairs to [(1602,40),(1922,32),(2562,16),(3202,16),(3842,8)]
at iterations [20K,40K,60K,80K,100K]. For stage two, we adopt the same training settings as in
stage one. Moreover, following previous works [53, 54], we apply random rotation and flips for data
augmentation. We use PyTorch [31] to implement our models with 4 A100 GPUs.

4.2 Ablation Study

In this section, we study the effects of different designs of our proposed method. We conduct all
experiments on the dataset GoPro [28]. The iterations for stages one and two are 100K, respectively.
The image patch size and batch size are set as 192⇥192 and 32. When we calculate the FLOPs, the
image size is 3⇥256⇥256. The results are reported in Tab. 1 and Figs. 2 and 3.

Effects of Diffusion Prior. We construct a baseline model without prior generated from diffusion in
the first row of Tab. 1, denoted as Baseline, which is actually the vanilla Restormer [53] architecture.
For fair comparisons, Baseline adopts the same implementation and training settings as HI-Diff (ours,
listed in the fourth row). Comparing Baseline and HI-Diff, we can discover that using the prior
feature generated by the latent diffusion model (DM) yields a 0.28 dB improvement. It demonstrates
the effectiveness of our proposed method. In addition, the HI-Diff, integrated with diffusion, only
adds 4.86M Params and 8.22G FLOPs over Baseline. It reveals that performing the diffusion model
in highly compact latent space is very efficient. Furthermore, we show the visual comparisons of the
Baseline (without the prior feature) and HI-Diff in Fig. 2 (first row). Our HI-Diff, generates sharper
textures and complete structures, compared with Baseline.
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GT Baseline HI-Diff

GT Single HI-Diff

Figure 2: Deblurred samples for different models in Tab. 1.
The first row shows effects of diffusion prior, while the
second row exhibits effects of hierarchical integration.

Figure 3: Ablation study of the num-
ber of iterations T in diffusion model,
T : {1, 2, 4, 8, 16, 32}.

Effects of Hierarchical Integration. We conduct an ablation experiment on the hierarchical inte-
gration with the multi-scale prior feature (illustrated in Fig. 1(c). We apply the single-scale prior
feature on Transformer, which means we set z1=z2=z3=z (or ẑ). We denote the new model as
Single-Guide, and its result is shown in the second row. We find that the PSNR of Single-Guide drops
by 0.24dB compared with HI-Diff, which adopts the multi-scale prior feature. It indicates that the
single-scale prior feature cannot adapt well to complex blurry situations. The visual comparison in
Fig. 2 (second row) reveals that applying the hierarchical integration restores better-deblurred images.

Effects of Joint Training Strategy. We explore the impact of the joint training strategy in stage two.
We train a model only optimized diffusion model in stage two, denoted as Split-Training. Specifically,
for Split-Training, we first generate the prior feature z from the ground truth and then apply the
training objective defined in Eq. (7) to train the diffusion model alone. Then the diffusion model is
directly combined with Transformer for evaluation after training is complete. For fair comparisons,
Split-Training applies the same pre-trained (stage one) model as HI-Diff in stage two training, and
the iterations are 100K. Comparing Split-Training and HI-Diff, HI-Diff is significantly better than
Split-Training by 1.51 dB on PSNR value. These results are consistent with the analysis in Sec. 3.2
and demonstrate the importance of the joint training strategy.

Effects of Iterations Number. We further conduct an ablation study to investigate the influence of
iteration numbers in the diffusion model. We set six different iterations T : {1, 2, 4, 8, 16, 32} for the
diffusion model. Meanwhile, the variance hyperparameters �1:T are always linearly interpolated from
�1=0.1 to �T=0.99 for different T . We plot the PSNR of different iterations T in Fig. 3. We find
that only one iteration inference cannot generate the reasonable prior feature, limiting the deblurring
performance. Besides, when the number of iterations reaches 8, the curve basically converges. It
indicates that only a small number of iterations is needed to generate the suitable prior feature, since
the simple distribution of the highly compact latent space (only contains N=16 tokens).

4.3 Evaluation on Synthetic Datasets
We compare our HI-Diff with 16 state-of-the-art methods: DeblurGAN [22], DeepDeblur [28],
DeblurGAN-v2 [23], SRN [43], DBGAN [56], MT-RNN [30], DMPHN [55], SAPHN [42],
SPAIR [32], MIMO-UNet+ [5], TTFA [4], MPRNet [54], HINet [2], Restormer [53], and Strip-
former [44]. We show quantitative results in Tab. 2 and visual results in Fig. 4.

Quantitative Results. We train our method on GoPro [28], and test it on GoPro and HIDE [39].
Moreover, we further test the GoPro-trained model on the real-world dataset: RealBlur [34] (RealBlur-
R and RealBlur-J). The PSNR/SSIM results on four benchmark datasets are reported in Tab. 2. Our
method outperforms all compared state-of-the-art methods on all datasets.

When compared on synthetic datasets: GoPro and HIDE, our HI-Diff obtains the 0.25 dB gain on
GoPro over Stripformer [44], the second best method. Meanwhile, compared with Restormer [53],
the backbone of our method, our HI-Diff yields 0.41 dB and 0.24 dB gains on GoPro and HIDE.

When compared on real-world datasets: RealBlur-R and RealBlur-J, our HI-Diff exhibit a better gen-
eralization ability than other state-of-the-art algorithms. Compared with the recent best-performing
method on GoPro, Stripformer, our method yields 0.33 dB on the RealBlur-J dataset. Besides, the
HI-Diff outperforms the backbone, Restormer [53], by 0.09 dB on RealBlur-R and 0.19 dB on
RealBlur-J. All these comparisons demonstrate the effectiveness of our HI-Diff.
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GoPro [28] HIDE [39] RealBlur-R [34] RealBlur-J [34]Method PSNR " SSIM " PSNR " SSIM " PSNR " SSIM " PSNR " SSIM "
DeblurGAN [22] 28.70 0.858 24.51 0.871 33.79 0.903 27.97 0.834
DeepDeblur [28] 29.08 0.914 25.73 0.874 32.51 0.841 27.87 0.827
DeblurGAN-v2 [23] 29.55 0.934 26.61 0.875 35.26 0.944 28.70 0.866
SRN [43] 30.26 0.934 28.36 0.915 35.66 0.947 28.56 0.867
DBGAN [56] 31.10 0.942 28.94 0.915 33.78 0.909 24.93 0.745
MT-RNN [30] 31.15 0.945 29.15 0.918 35.79 0.951 28.44 0.862
DMPHN [55] 31.20 0.940 29.09 0.924 35.70 0.948 28.42 0.860
SAPHN [42] 31.85 0.948 29.98 0.930 N/A N/A N/A N/A
SPAIR [32] 32.06 0.953 30.29 0.931 N/A N/A 28.81 0.875
MIMO-UNet+ [5] 32.45 0.957 29.99 0.930 35.54 0.947 27.63 0.837
TTFA [4] 32.50 0.958 30.55 0.935 N/A N/A N/A N/A
MPRNet [54] 32.66 0.959 30.96 0.939 35.99 0.952 28.70 0.873
HINet [2] 32.71 0.959 30.32 0.932 35.75 0.949 28.17 0.849
Restormer [53] 32.92 0.961 31.22 0.942 36.19 0.957 28.96 0.879
Stripformer [44] 33.08 0.962 31.03 0.940 36.08 0.954 28.82 0.876
HI-Diff (ours) 33.33 0.964 31.46 0.945 36.28 0.958 29.15 0.890

Table 2: Quantitative comparisons on the four benchmark datsets: GoPro [28], HIDE [39], and
RealBlur [34] (RealBlur-R and RealBlur-J). All models are trained only on GoPro dataset. Best and
second best results are colored with red and blue. Our HI-Diff outperforms state-of-the-art methods.

GoPro

GT Blurry DBGAN [56] MIMO-UNet+ [5]

MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours)

HIDE

GT Blurry DBGAN [56] MIMO-UNet+ [5]

MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours)

RealBlur-J

GT Blurry DBGAN [56] MIMO-UNet+ [5]

MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours)

RWBI

Blurry DBGAN [56] DMPHN [55] MIMO-UNet+ [5]

MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours)

Figure 4: Visual comparison on GoPro [28], HIDE [39], RealBlur [34], and RWBI [56] datasets.
RWBI only contains blurry images are captured with different hand-held devices. Models are trained
only on the GoPro dataset. Our HI-Diff generates images with clearer details.

Visual Results. We show visual comparisons on GoPro [28], HIDE [39], RealBlur [34], and
RWBI [56] in Fig. 4. We can observe that most compared methods suffer from artifacts or still contain
significant blur effects. In contrast, our method can reconstruct more accurate textures and sharper
edges. For example, in the HIDE sample, compared methods fail to reconstruct the white lines in
the cloth, while our method recover sharp textures. All these visual comparisons are consistent with
quantitative results and further demonstrate the superiority of our method.
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DeblurGAN-v2 SRN MIMO-UNet+ MPRNet BANet Stripformer HI-DiffDataset Method [23] [43] [5] [54] [45] [44] (ours)

RealBlur-R PSNR " 36.44 38.65 N/A 39.31 39.55 39.84 41.01
[34] SSIM " 0.935 0.965 N/A 0.972 0.971 0.974 0.978

RealBlur-J PSNR " 29.69 31.38 31.92 31.76 32.00 32.48 33.70
[34] SSIM " 0.870 0.909 0.919 0.922 0.9230 0.929 0.941

Table 3: Quantitative comparisons on RealBlur [34]. All models are trained and tested on the
corresponding datasets. Best and second best results are colored with red and blue.

DMPHN MIMO-UNet+ MPRNet HINet Restormer Stripformer HI-Diff HI-Diff-2Method [55] [5] [54] [2] [53] [44] (ours) (ours)

Params (M) 21.70 16.11 20.13 88.67 26.13 19.71 28.49 23.99
FLOPs (G) 195.44 150.68 760.02 67.51 154.88 155.03 142.62 125.47
PSNR (dB) 31.20 32.45 32.66 32.71 32.92 33.08 33.33 33.28

Table 4: Model complexity comparisons. Params, FLOPs, and PSNR on GoPro are reported. When
we calculate the FLOPs, the image size is set as 3⇥256⇥256.

RealBlur-J

GT Blurry DeblurGAN-v2 [23] SRN [43]

MIMO-UNet+ [5] MPRNet [54] Stripformer [44] HI-Diff (ours)

Figure 5: Visual comparison on the RealBlur [34] dataset. Models are trained on the RealBlur dataset.

4.4 Evaluation on Real-World Datasets

We further compare our HI-Diff with 6 state-of-the-art methods: DeblurGAN-v2 [23], SRN [43],
MIMO-UNet+ [5], MPRNet [54], BANet [45], and Stripformer [44]. We show quantitative and visual
results in Tab. 4 and Fig. 5. For fair comparisons, all previous method results are directly cited from
the original papers or generated from official pre-trained models.

Quantitative Results. Table 3 reports PSNR/SSIM comparisons on real-world datasets: Real-
Blur [34] (RealBlur-R and RealBlur-J). We train and test our HI-Diff on the RealBlur datasets,
following previous works [54, 44]. Our method significantly outperforms other compared methods on
the two datasets. Especially, compared with the recent best method, Stripformer, the HI-Diff obtains
1.17 dB and 1.22 dB gains on RealBlur-R and RealBlur-J, respectively.

Visual Results. We show visual comparisons on RealBlur in Fig. 5. Our method recovers sharper
images with more high-frequency textures. However, most compared methods fail to recover clear
images. For instance, compared methods have severe artifacts and blurring on green words, while our
HI-Diff restores correct textures that are generally faithful to the ground truth. These visual results
further demonstrate the strong ability of our HI-Diff for realistic image deblurring.

4.5 Model Size Analyses
We further show the comparison of model size (e.g., Params) and computational complexity (e.g.,
FLOPs) in Tab. 4. The FLOPs are measured when the image size is set as 3⇥256⇥256. It shows that
our HI-Diff has less FLOPs than CNN-based methods (e.g., MPRNet [54]). Meanwhile, compared
with Transformer-based methods, Restormer [53] and Stripformer [44], our HI-Diff performs better
with comparable Params and less FLOPs. It indicates that our method achieves a better trade-off
between performance and computational consumption. To further demonstrate the effectiveness of our
method, we provide another variant of HI-Diff with less Params and FLOPs and better performance
than Restormer. More details about HI-Diff-2 are provided in the supplementary material.

5 Conclusion
In this paper, we design the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image
deblurring. Specifically, HI-Diff performs the diffusion model to generate the prior feature for a
regression-based method during deblurring. The regression-based method preserves the general
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Synthetic
• Train only on GoPro.
• Performs well on 

synthetic datasets:
GoPro and HIDE.

• Performs well on real-
world dataset: RealBlur.

• Better generalization 
ability than others.

Real-World
• Train on the RealBlur.
• Outperforms other 

compared methods.



Experiments

9

GoPro [28] HIDE [39] RealBlur-R [34] RealBlur-J [34]Method PSNR " SSIM " PSNR " SSIM " PSNR " SSIM " PSNR " SSIM "
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DBGAN [56] 31.10 0.942 28.94 0.915 33.78 0.909 24.93 0.745
MT-RNN [30] 31.15 0.945 29.15 0.918 35.79 0.951 28.44 0.862
DMPHN [55] 31.20 0.940 29.09 0.924 35.70 0.948 28.42 0.860
SAPHN [42] 31.85 0.948 29.98 0.930 N/A N/A N/A N/A
SPAIR [32] 32.06 0.953 30.29 0.931 N/A N/A 28.81 0.875
MIMO-UNet+ [5] 32.45 0.957 29.99 0.930 35.54 0.947 27.63 0.837
TTFA [4] 32.50 0.958 30.55 0.935 N/A N/A N/A N/A
MPRNet [54] 32.66 0.959 30.96 0.939 35.99 0.952 28.70 0.873
HINet [2] 32.71 0.959 30.32 0.932 35.75 0.949 28.17 0.849
Restormer [53] 32.92 0.961 31.22 0.942 36.19 0.957 28.96 0.879
Stripformer [44] 33.08 0.962 31.03 0.940 36.08 0.954 28.82 0.876
HI-Diff (ours) 33.33 0.964 31.46 0.945 36.28 0.958 29.15 0.890

Table 2: Quantitative comparisons on the four benchmark datsets: GoPro [28], HIDE [39], and
RealBlur [34] (RealBlur-R and RealBlur-J). All models are trained only on GoPro dataset. Best and
second best results are colored with red and blue. Our HI-Diff outperforms state-of-the-art methods.

GoPro

GT Blurry DBGAN [56] MIMO-UNet+ [5]

MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours)

HIDE

GT Blurry DBGAN [56] MIMO-UNet+ [5]

MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours)

RealBlur-J

GT Blurry DBGAN [56] MIMO-UNet+ [5]

MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours)

RWBI

Blurry DBGAN [56] DMPHN [55] MIMO-UNet+ [5]

MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours)

Figure 4: Visual comparison on GoPro [28], HIDE [39], RealBlur [34], and RWBI [56] datasets.
RWBI only contains blurry images are captured with different hand-held devices. Models are trained
only on the GoPro dataset. Our HI-Diff generates images with clearer details.

Visual Results. We show visual comparisons on GoPro [28], HIDE [39], RealBlur [34], and
RWBI [56] in Fig. 4. We can observe that most compared methods suffer from artifacts or still contain
significant blur effects. In contrast, our method can reconstruct more accurate textures and sharper
edges. For example, in the HIDE sample, compared methods fail to reconstruct the white lines in
the cloth, while our method recover sharp textures. All these visual comparisons are consistent with
quantitative results and further demonstrate the superiority of our method.
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Visual comparison
• Our method reconstructs more accurate textures and sharper edges.
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Model Size
• Our method achieves a better trade-off between performance and complexity.

DeblurGAN-v2 SRN MIMO-UNet+ MPRNet BANet Stripformer HI-DiffDataset Method [23] [43] [5] [54] [45] [44] (ours)

RealBlur-R PSNR " 36.44 38.65 N/A 39.31 39.55 39.84 41.01
[34] SSIM " 0.935 0.965 N/A 0.972 0.971 0.974 0.978

RealBlur-J PSNR " 29.69 31.38 31.92 31.76 32.00 32.48 33.70
[34] SSIM " 0.870 0.909 0.919 0.922 0.9230 0.929 0.941

Table 3: Quantitative comparisons on RealBlur [34]. All models are trained and tested on the
corresponding datasets. Best and second best results are colored with red and blue.

DMPHN MIMO-UNet+ MPRNet HINet Restormer Stripformer HI-Diff HI-Diff-2Method [55] [5] [54] [2] [53] [44] (ours) (ours)

Params (M) 21.70 16.11 20.13 88.67 26.13 19.71 28.49 23.99
FLOPs (G) 195.44 150.68 760.02 67.51 154.88 155.03 142.62 125.47
PSNR (dB) 31.20 32.45 32.66 32.71 32.92 33.08 33.33 33.28

Table 4: Model complexity comparisons. Params, FLOPs, and PSNR on GoPro are reported. When
we calculate the FLOPs, the image size is set as 3⇥256⇥256.

RealBlur-J

GT Blurry DeblurGAN-v2 [23] SRN [43]

MIMO-UNet+ [5] MPRNet [54] Stripformer [44] HI-Diff (ours)

Figure 5: Visual comparison on the RealBlur [34] dataset. Models are trained on the RealBlur dataset.

4.4 Evaluation on Real-World Datasets

We further compare our HI-Diff with 6 state-of-the-art methods: DeblurGAN-v2 [23], SRN [43],
MIMO-UNet+ [5], MPRNet [54], BANet [45], and Stripformer [44]. We show quantitative and visual
results in Tab. 4 and Fig. 5. For fair comparisons, all previous method results are directly cited from
the original papers or generated from official pre-trained models.

Quantitative Results. Table 3 reports PSNR/SSIM comparisons on real-world datasets: Real-
Blur [34] (RealBlur-R and RealBlur-J). We train and test our HI-Diff on the RealBlur datasets,
following previous works [54, 44]. Our method significantly outperforms other compared methods on
the two datasets. Especially, compared with the recent best method, Stripformer, the HI-Diff obtains
1.17 dB and 1.22 dB gains on RealBlur-R and RealBlur-J, respectively.

Visual Results. We show visual comparisons on RealBlur in Fig. 5. Our method recovers sharper
images with more high-frequency textures. However, most compared methods fail to recover clear
images. For instance, compared methods have severe artifacts and blurring on green words, while our
HI-Diff restores correct textures that are generally faithful to the ground truth. These visual results
further demonstrate the strong ability of our HI-Diff for realistic image deblurring.

4.5 Model Size Analyses
We further show the comparison of model size (e.g., Params) and computational complexity (e.g.,
FLOPs) in Tab. 4. The FLOPs are measured when the image size is set as 3⇥256⇥256. It shows that
our HI-Diff has less FLOPs than CNN-based methods (e.g., MPRNet [54]). Meanwhile, compared
with Transformer-based methods, Restormer [53] and Stripformer [44], our HI-Diff performs better
with comparable Params and less FLOPs. It indicates that our method achieves a better trade-off
between performance and computational consumption. To further demonstrate the effectiveness of our
method, we provide another variant of HI-Diff with less Params and FLOPs and better performance
than Restormer. More details about HI-Diff-2 are provided in the supplementary material.

5 Conclusion
In this paper, we design the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image
deblurring. Specifically, HI-Diff performs the diffusion model to generate the prior feature for a
regression-based method during deblurring. The regression-based method preserves the general
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Method Params FLOPs LPIPS # DISTS # NIQE # PSNR " SSIM "
DvSR (CVPR’22) 26.07M 170.31T 0.059 N/A 3.39 31.66 0.948
DvSR-SA (CVPR’22) 26.07M 3406.22G 0.078 N/A 4.07 33.23 0.963
DiffIR (ICCV’23) 26.94M 120.99G 0.081 0.071 4.13 33.20 0.963
HI-Diff (ours) 28.49M 142.62G 0.080 0.071 4.12 33.33 0.964
HI-Diff-PE-1 (ours) 28.49M 142.62G 0.051 0.031 3.53 33.27 0.963
HI-Diff-PE-2 (ours) 28.49M 142.62G 0.044 0.029 3.30 32.84 0.959

Table 3: Quantitative comparisons with diffusion models on GoPro [10]. We evaluate methods on
two distortion-based metrics: PSNR and SSIM, and three perceptual metrics: LPIPS [22], DISTS [2],
and NIQE [9]. The FLOPs are calculated when the input image size is set to 3⇥256⇥256. Best and
second best results are colored with red and blue.

GT Blurry z8 (noise, ✏) z4 z2 z0 (output)

Figure 1: Visualization of the diffusion process. Notably, images in the rightmost column (z0) are
actually the final outputs of our HI-Diff.

GoPro

GT Blurry DBGAN MIMO-UNet+

MPRNet Restormer DiffIR HI-Diff (ours)

GoPro

GT Blurry DBGAN MIMO-UNet+

MPRNet Restormer DiffIR HI-Diff (ours)

Figure 2: Failure case. Compared with other methods, Our HI-Diff can alleviate more artifacts.

2 More Quantitative Results

We compare our methods with some diffusion models: DvSR [17] and DiffIR [18] in Tab. 3. DvSR-
SA represents DvSR applying sample average for distortion accuracy. Our methods achieve better
performance on both distortion-based and perceptual metrics compared with other diffusion models.

3 More Visual Results

We show some visualization of the diffusion process in Fig. 1 and some failure cases in Fig. 2.
Meanwhile, we provide more visual comparisons in Figs. 3, 4, 5, 6, 7, and 8.
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Diffusion
• Blur images 

gradually become 
sharp as the 
reverse process 
proceeds. 
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Contribution
• We design a novel approach called the Hierarchical Integration Diffusion Model (HI-Diff) 

for realistic (synthetic and real-world) image deblurring.
• Our HI-Diff leverages the power of diffusion models to generate prior and hierarchically 

integrates priors into the deblurring process for better generalization in complex scenarios.
• Our HI-Diff achieves superior performance on synthetic and real-world blur datasets.
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