

On Calibrating Diffusion Probabilistic Models

Zhijie Deng

zhijied@sjtu.edu.cn

Shanghai Jiao Tong University

Joint work with Tianyu Pang, Cheng Lu, Chao Du, Min Lin, and Shuicheng Yan

Diffusion Models in 2020 (Nonequilibrium Thermodynamics)

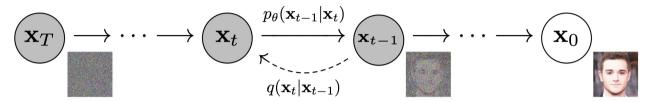


Figure 2: The directed graphical model considered in this work.

Figure 1: Generated samples on CelebA-HQ 256 × 256 (left) and unconditional CIFAR10 (right)

Figure 3: LSUN Church samples. FID=7.89

Figure 4: LSUN Bedroom samples. FID=4.90

- [1] Sohl-Dickstein et al. Deep Unsupervised Learning using Nonequilibrium Thermodynamics. ICML 2015
- [2] Ho et al. Denoising Diffusion Probabilistic Models. NeurIPS 2020

Diffusion Models in 2020 (Annealed Langevin Dynamics)

Algorithm 1 Annealed Langevin dynamics.

```
Require: \{\sigma_i\}_{i=1}^L, \epsilon, T.

1: Initialize \tilde{\mathbf{x}}_0

2: for i \leftarrow 1 to L do

3: \alpha_i \leftarrow \epsilon \cdot \sigma_i^2/\sigma_L^2 \Rightarrow \alpha_i is the step size.

4: for t \leftarrow 1 to T do

5: Draw \mathbf{z}_t \sim \mathcal{N}(0, I)

6: \tilde{\mathbf{x}}_t \leftarrow \tilde{\mathbf{x}}_{t-1} + \frac{\alpha_i}{2} \mathbf{s}_{\theta}(\tilde{\mathbf{x}}_{t-1}, \sigma_i) + \sqrt{\alpha_i} \mathbf{z}_t

7: end for

8: \tilde{\mathbf{x}}_0 \leftarrow \tilde{\mathbf{x}}_T

9: end for return \tilde{\mathbf{x}}_T
```


Figure 1: Generated samples on datasets of decreasing resolutions. From left to right: FFHQ 256×256 , LSUN bedroom 128×128 , LSUN tower 128×128 , LSUN church_outdoor 96×96 , and CelebA 64×64 .

EBMs (BP through CNNs) → Score-based models (U-Nets)

- [3] Song & Ermon. Generative Modeling by Estimating Gradients of the Data Distribution. NeurIPS 2019
- [4] Song & Ermon. Improved Techniques for Training Score-Based Generative Models. NeurIPS 2020

Diffusion Models in 2021 (Stochastic Differential Equations)

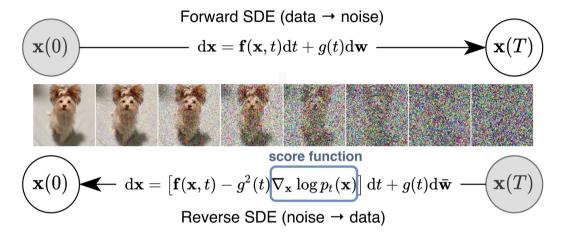


Figure 1: Solving a reversetime SDE yields a score-based generative model. Transforming data to a simple noise distribution can be accomplished with a continuous-time SDE. This SDE can be reversed if we know the score of the distribution at each intermediate time step, $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$.

- Drift coefficient *f*
- Diffusion coefficient g

Diffusion Processes

Forward process (transition distribution):

$$x_0 \sim q_0(x_0), \quad q_{0t}(x_t|x_0) = \mathcal{N}(x_t|\alpha_t x_0, \sigma_t^2 \mathbf{I})$$

Forward process (SDE):

$$dx_t = f(t)x_t dt + g(t)d\omega_t$$

where
$$f(t)=\frac{d\log\alpha_t}{dt}$$
 and $g(t)^2=\frac{d\sigma_t^2}{dt}-2\frac{d\log\alpha_t}{dt}\sigma_t^2$

Diffusion Processes

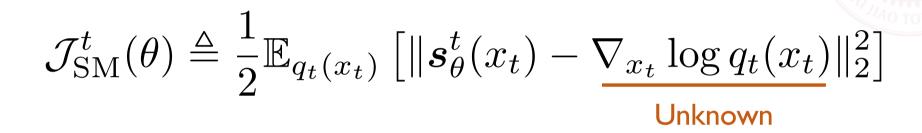
Reverse process (SDE):

$$dx_t = \left[f(t)x_t - g(t)^2 \nabla_{x_t} \log q_t(x_t) \right] dt + g(t) d\overline{\omega}_t$$

Reverse process (ODE):

$$\frac{dx_t}{dt} = f(t)x_t - \frac{1}{2}g(t)^2 \nabla_{x_t} \log q_t(x_t)$$

Training DPMs by Score Matching



$$\mathcal{J}_{\mathrm{SM}}(\theta; \lambda(t)) \triangleq \int_0^T \lambda(t) \mathcal{J}_{\mathrm{SM}}^t(\theta) dt$$

Training DPMs by Denoising Score Matching

$$\mathcal{J}_{\mathrm{DSM}}^{t}(\theta) \triangleq \frac{1}{2} \mathbb{E}_{q_{0}(x_{0}), q(\epsilon)} \left[\left\| \boldsymbol{s}_{\theta}^{t}(x_{t}) + \frac{\epsilon}{\sigma_{t}} \right\|_{2}^{2} \right]$$

where
$$x_t = \alpha_t x_0 + \sigma_t \epsilon$$
 and $q(\epsilon) = \mathcal{N}(\epsilon | \mathbf{0}, \mathbf{I})$

The Stochastic Process of Data Score is a Martingale

Theorem 1. (Proof in Appendix A.1) Let $q_t(x_t)$ be constructed from the forward process in Eq. (2). Then under some regularity conditions, we have $\forall 0 \leq s < t \leq T$,

$$\alpha_t \nabla_{x_t} \log q_t(x_t) = \mathbb{E}_{q_{st}(x_s|x_t)} \left[\alpha_s \nabla_{x_s} \log q_s(x_s) \right], \tag{6}$$

where $q_{st}(x_s|x_t) = \frac{q_{st}(x_t|x_s)q_s(x_s)}{q_t(x_t)}$ is the transition probability from x_t to x_s .

Leads to concentration bounds and naturally $\mathbb{E}_{q_t(x_t)}\left[\nabla_{x_t}\log q_t(x_t)\right]=0$

Calibrating DPMs

Although
$$\mathbb{E}_{q_t(x_t)}\left[\nabla_{x_t}\log q_t(x_t)\right] = 0$$

Typically there is
$$\mathbb{E}_{q_t(x_t)}\left[\boldsymbol{s}_{\theta}^t(x_t)\right] \neq 0$$

So we calibrate DPMs into $~oldsymbol{s}_{ heta}^t(x_t) - \eta_t$

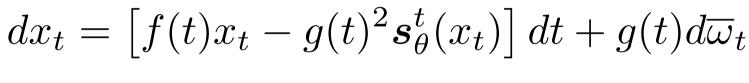
Calibrating DPMs

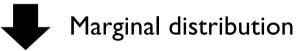
Given any pretrained DPM, we can calibrate it as:

$$s_{\theta}^{t}(x_{t}) - \mathbb{E}_{q_{t}(x_{t})} \left[s_{\theta}^{t}(x_{t}) \right]$$

$$\mathcal{J}_{\mathrm{SM}}^{t}(\theta, \eta_{t}^{*}) = \mathcal{J}_{\mathrm{SM}}^{t}(\theta) - \frac{1}{2} \left\| \mathbb{E}_{q_{t}(x_{t})} \left[\boldsymbol{s}_{\theta}^{t}(x_{t}) \right] \right\|_{2}^{2}$$

Likelihood of Calibrating DPMs: SDE Solver





$$p_t^{\mathrm{SDE}}(x_t; \theta)$$

$$\mathcal{D}_{\mathrm{KL}}\left(q_0 \| p_0^{\mathrm{SDE}}(\theta)\right) \leq \mathcal{J}_{\mathrm{SM}}(\theta; g(t)^2) + \mathcal{D}_{\mathrm{KL}}\left(q_T \| p_T\right)$$

Likelihood of Calibrating DPMs: SDE Solver

$$dx_t = \left[f(t)x_t - g(t)^2 (\boldsymbol{s}_{\theta}^t(x_t) - \underline{\eta_t}) \right] dt + g(t) d\overline{\omega}_t$$

Marginal distribution

$$p_0^{\mathrm{SDE}}(x_t; \theta, \eta_t)$$

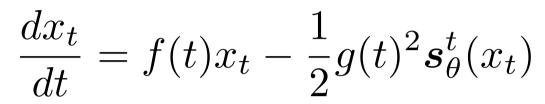
$$\mathcal{D}_{\mathrm{KL}}\left(q_0 \| p_0^{\mathrm{SDE}}(\theta, \eta_t)\right) \leq \mathcal{J}_{\mathrm{SM}}(\theta, \eta_t; g(t)^2) + \mathcal{D}_{\mathrm{KL}}\left(q_T \| p_T\right)$$

Likelihood of Calibrating DPMs: SDE Solver

$$\mathcal{J}_{SM}(\theta, \eta_t^*; g(t)^2) = \mathcal{J}_{SM}(\theta; g(t)^2) - \frac{1}{2} \int_0^T g(t)^2 \| \mathbb{E}_{q_t(x_t)} \left[s_{\theta}^t(x_t) \right] \|_2^2 dt$$

Upper bound reduced by calibration

Likelihood of Calibrating DPMs: ODE Solver

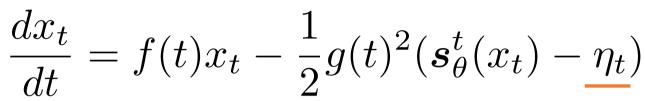


Marginal distribution

$$p_t^{\text{ODE}}(x_t; \theta)$$

$$\mathcal{D}_{\mathrm{KL}}\left(q_0 \| p_0^{\mathrm{ODE}}(\theta)\right) \approx \mathcal{J}_{\mathrm{SM}}(\theta; g(t)^2) + \mathcal{D}_{\mathrm{KL}}\left(q_T \| p_T\right)$$

Likelihood of Calibrating DPMs: ODE Solver



Marginal distribution

$$p_t^{\text{ODE}}(x_t; \theta, \eta_t)$$

$$\mathcal{D}_{\mathrm{KL}}\left(q_0 \| p_0^{\mathrm{ODE}}(\theta, \eta_t)\right) \approx \mathcal{J}_{\mathrm{SM}}(\theta, \eta_t; g(t)^2) + \mathcal{D}_{\mathrm{KL}}\left(q_T \| p_T\right)$$

Empirical Results

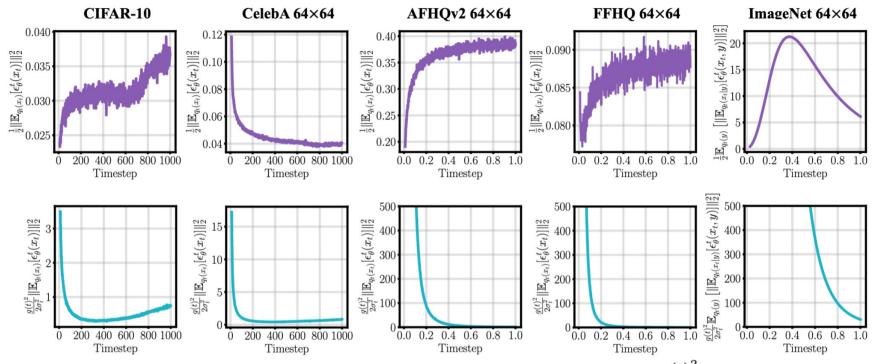


Figure 1: Time-dependent values of $\frac{1}{2} \| \mathbb{E}_{q_t(x_t)} \left[\boldsymbol{\epsilon}_{\theta}^t(x_t) \right] \|_2^2$ (the first row) and $\frac{g(t)^2}{2\sigma_t^2} \| \mathbb{E}_{q_t(x_t)} \left[\boldsymbol{\epsilon}_{\theta}^t(x_t) \right] \|_2^2$ (the second row) calculated on different datasets. The models on CIFAR-10 and CelebA is trained on discrete timesteps $(t=0,1,\cdots,1000)$, while those on AFHQv2, FFHQ, and ImageNet are trained on continuous timesteps $(t\in[0,1])$. We convert data prediction $\boldsymbol{x}_{\theta}^t(x_t)$ into noise prediction $\boldsymbol{\epsilon}_{\theta}^t(x_t)$ based on $\boldsymbol{\epsilon}_{\theta}^t(x_t) = (x_t - \alpha_t \boldsymbol{x}_{\theta}^t(x_t))/\sigma_t$. The y-axis is clamped into [0,500].

Empirical Results

Table 1: Comparison on sample quality measured by FID \downarrow with varying NFE on CIFAR-10. Experiments are conducted using a linear noise schedule on the discrete-time model from [15]. We consider three variants of DPM-Solver with different orders. The results with \dagger mean the actual NFE is order $\times \lfloor \frac{NFE}{order} \rfloor$ which is smaller than the given NFE, following the setting in [26].

Noise prediction	DDM Colver	Number of evaluations (NFE)						
	DPM-Solver	10	15	20	25	30	35	40
$oldsymbol{\epsilon}_{ heta}^t(x_t)$	1-order	20.49	12.47	9.72	7.89	6.84	6.22	5.75
	2-order	7.35	†4.52	4.14	†3.92	3.74	†3.71	3.68
	3-order	†23.96	4.61	†3.89	†3.73	3.65	†3.65	†3.60
$oldsymbol{\epsilon}_{ heta}^t(x_t) - \mathbb{E}_{q_t(x_t)}\left[oldsymbol{\epsilon}_{ heta}^t(x_t) ight]$	1-order	19.31	11.77	8.86	7.35	6.28	5.76	5.36
	2-order	6.76	†4.36	4.03	†3.66	3.54	†3.44	3.48
	3-order	†53.50	4.22	†3.32	† 3.33	3.35	†3.32	† 3.31

Table 2: Comparison on sample quality measured by FID \downarrow with varying NFE on CelebA 64×64. Experiments are conducted using a linear noise schedule on the discrete-time model from [35]. The settings of DPM-Solver are the same as on CIFAR-10.

Noise prediction	DDM Colver	Number of evaluations (NFE)						
	DPM-Solver	10	15	20	25	30	35	40
$oldsymbol{\epsilon}^t_{ heta}(x_t)$	1-order	16.74	11.85	7.93	6.67	5.90	5.38	5.01
	2-order	4.32	†3.98	2.94	$^{\dagger}2.88$	2.88	$^{\dagger}2.88$	2.84
	3-order	†11.92	3.91	†2.84	†2.76	2.82	†2.81	†2.85
$oldsymbol{\epsilon}_{ heta}^t(x_t) - \mathbb{E}_{q_t(x_t)}\left[oldsymbol{\epsilon}_{ heta}^t(x_t) ight]$	1-order	16.13	11.29	7.09	6.06	5.28	4.87	4.39
	2-order	4.42	†3.94	2.61	†2.66	2.54	†2.52	2.49
	3-order	†35.47	3.62	† 2.33	† 2.43	2.40	† 2.43	† 2.49

Empirical Results

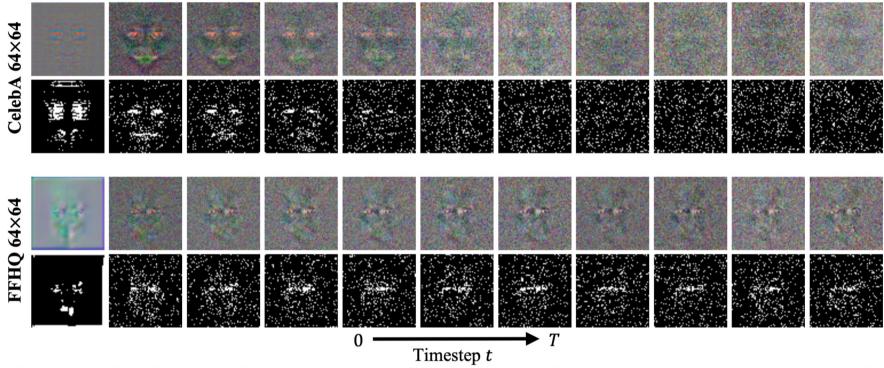


Figure 2: Visualization of the expected predicted noises with increasing t. For each dataset, the first row displays $\mathbb{E}_{q_t(x_t)}\left[\boldsymbol{\epsilon}_{\theta}^t(x_t)\right]$ (after normalization) and the second row highlights the top-10% pixels that $\mathbb{E}_{q_t(x_t)}\left[\boldsymbol{\epsilon}_{\theta}^t(x_t)\right]$ has high values. The DPM on CelebA is a discrete-time model with 1000 timesteps [35] and that on FFHQ is a continuous-time one [20].

Thanks

