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| Diffusion Models in 2020 (Nonequilibrium Thermodynamics)
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Figure 2: The directed graphical model considered in this work.
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Figure 3: LSUN Church samples. FID=7.89 Figure 4: LSUN Bedroom samples. FID=4.90
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Flgure 1: Generated samples on CelebA-HQ 256 x 256 (left) and unconditional CIFAR10 (right)

[1] Sohl-Dickstein et al. Deep Unsupervised Learning using Nonequilibrium Thermodynamics. ICML 2015
[2] Ho et al. Denoising Diffusion Probabilistic Models. NeurIPS 2020



| Diffusion Models in 2020 (Annealed Langevin Dynamics)

Algorithm 1 Annealed Langevin dynamics.

Require: {o;}F ¢, T.

1: Initialize Xg
2: fori < 1to Ldo
2 2 o o
3 < e-07 /0% > «; is the step size.
4: fort < 1to7 do
5: Draw z; ~ N (0, I)
~ ~ 8% ~

6 Xy < X¢—1 + ?SO(Xt—laai) + /i 2y
7 end for
8 5(0 — X7 4 .
9: end for Figure 1: Generated samples on datasets of decreasing resolutions. From left to right: FFHQ

t ~ 256 x 256, LSUN bedroom 128 x 128, LSUN tower 128 x 128, LSUN church_outdoor 96 x 96,

return xr and CelebA 64 x 64.

EBMs (BP through CNNs) — Score-based models (U-Nets)

[3] Song & Ermon. Generative Modeling by Estimating Gradients of the Data Distribution. NeurIPS 2019
[4] Song & Ermon. Improved Techniques for Training Score-Based Generative Models. NeurIPS 2020



| Diffusion Models in 2021 (Stochastic Differential Equations)

Forward SDE (data = noise) Figure 1: Solving a reverse-
Q dx = f(x,t)dt + g(t)dw time SDE yields a score-based
generative model. Transform-

ing data to a simple noise dis-
tribution can be accomplished

. ? :
| with a continuous-time SDE.

| A score function A » This SDE can be reversed if we
— ¢ (t)Vx logp (x)] dt + g(t)dw know the score of the distribu-
tion at each intermediate time

Reverse SDE (noise — data) step, Vx log p (X)
’ X t °

* Dirift coefficient f
* Diffusion coefficient g

[5] Song et al. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021



| Diffusion Processes

Forward process (transition distribution):
To ~ qo(Zo), qot(T¢|wo) = N (2¢|agzo, U?I)

Forward process (SDE):
dxy = f(t)zedt + g(t)dwy

do? dl
and g(t)* = % — 2 il%fatg?

dlog a;
dt

where f(t) =




| Diffusion Processes

Reverse process (SDE):
dry = [f(t)xt — g(t)vat log g1 (xt)] dt + g(t)dw;

Reverse process (ODE):

dZIZ‘t 1

— = f()z = 59()°Va, log (1)



| Training DPMs by Score Matching

1

Tsm(0) = SEq, @y [lIso (1) = Ve, log gi(z)|I2]

Unknown

Tont(B; A(1)) 2 /O A(E) T (6)



| Training DPMs by Denoising Score Matching

1__ €
Thsna(0) 2 5Eanan).ate) |||56(0) + =

where T+ = (4L + O€ and Q(G) — ./\/‘(6‘0, I)




| The Stochastic Process of Data Score is a Martingale

Theorem 1. (Proof in Appendix A.1) Let q;(x;) be constructed from the forward process in Eq. (2).
Then under some regularity conditions, we have V0 < s <t < T,

Vg, log qi(z:) = Eqst(wslwt) (s Vs, log gs(xs)], (6)

QSt(mt I-'Bs)q.s (ms)
q¢(xt)

where qsi(zs|z) = is the transition probability from x; to xs.

Leads to concentration bounds and naturally E, ;) |V, log g;(2¢)] = 0



| Calibrating DPMs

Although B (1) [V, log g¢(2¢)] = 0O

Typically there is 43(]t($t) [sg(xt)] ?é ()

So we calibrate DPMs into S’é (th) —



| Calibrating DPMs

Given any pretrained DPM, we can calibrate it as:

Sg(ws) — L () [Sg(wt)}

lv

jStM(‘ga 7715) jSM 5 H t(]t(xt) [StH(QEt)}




| Likelihood of Calibrating DPMs: SDE Solver

dry = [f(t)xr — g(t) sg ()] dt + g(t)de;
‘ Marginal distribution

pp"" (243 0)

Dx1 (9ollpg " (0)) < Tsm (95 9(¢)*) + Dk (qr||pr)



| Likelihood of Calibrating DPMs: SDE Solver

dzy = [f(t)xe — g(t)*(sp(xe) — me)| dt + g(t)da,
‘ Marginal distribution

PP (2450, m;)

Dxr, (CIO||Z9§DE(9,771&)) < Jsm(0,m:59(t)?) + Dx (g7 ||lpr)



| Likelihood of Calibrating DPMs: SDE Solver

1 T
Tona(0.739(6) = Fo(8:901) = 5 [ 90 [Eu [sh(a0] [t

Upper bound reduced by calibration



| Likelihood of Calibrating DPMs: ODE Solver

dﬂ?t 1

pra f(t)z — 59(75)282(3375)

‘ Marginal distribution

py P (24 0)

Dx1 (gollpg "™ (0)) ~ Tsm(0; 9(1)?) + Dxw (gr|lpr)



| Likelihood of Calibrating DPMs: ODE Solver

dx 1
= = (e — 590 (sh(z) —m)
‘ Marginal distribution
e (456, my)

Dxr (90llpg " (0,m:)) =~ Tsm (0, m4; 9(t)?) + Dk, (g7 ||pr)



| Empirical Results

CIFAR-10 CelebA 64%x64 AFHQV2 64x64 FFHQ 64x64 ImageNet 64%x64
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Figure 1: Time-dependent values of £ ||E,, () [€5(z+)] ||3 (the first row) and £ W ||]eq(xt) [€5(x)] I3

(the second row) calculated on different datasets. The models on CIFAR-10 and CelebA is trained on
discrete timesteps (t = 0, 1, - - - , 1000), while those on AFHQV2, FFHQ and ImageNet are trained
on continuous timesteps (t € [0 1]) We convert data prediction ) () into noise prediction €} (z+)
based on €})(z;) = (z¢ — auxf(z+))/or. The y-axis is clamped into [0, 500].



| Empirical Results

Table 1: Comparison on sample quality measured by FID | with varying NFE on CIFAR-10.
Experiments are conducted using a linear noise schedule on the discrete-time model from [15]. We
consider three variants of DPM-Solver with different orders. The results with { mean the actual NFE

is order X ngfrj which is smaller than the given NFE, following the setting in [26].

Number of evaluations (NFE)
10 15 20 25 30 35 40

1-order 2049 1247 972 789 6.84 622 5.5
€l () 2-order 735 1452 414 1392 374 1371 3.68
3-order 12396 4.61 7389 1373 3.65 73.65 13.60

1-order 1931 1177 886 735 628 576 5.36
€,(2t) — Equ(ay) [€5(z:)]  2-order 676 436 4.03 1366 3.54 344 3.48
3-order 5350 4.22 1332 333 335 1332 7331

Noise prediction DPM-Solver

Table 2: Comparison on sample quality measured by FID | with varying NFE on CelebA 64 x64.
Experiments are conducted using a linear noise schedule on the discrete-time model from [35]. The
settings of DPM-Solver are the same as on CIFAR-10.

Number of evaluations (NFE)
10 15 20 25 30 39 40

1-order 1674 1185 793 6.67 590 538 501
€b(zy) 2-order 432 1398 294 1288 2388 1288 284
3-order 1192 391 1284 276 2.82 12.81 12.85

1-order 16.13 1129 7.09 6.06 528 487 439
€h(zt) — Eg, () [€h(2¢)] 2-order 442 1394 261 1266 254 1252 2.49
3-order 13547 3.62 233 7243 240 72.43 1249

Noise prediction DPM-Solver




| Empirical Results

CelebA 64%x64

FFHQ 64X 64

Timestep t
Figure 2: Visualization of the expected predicted noises with increasing ¢. For each dataset, the
first row displays E,, ,,) [€j(z+)] (after normalization) and the second row highlights the top-10%
pixels that E,, () [€} ()] has high values. The DPM on CelebA is a discrete-time model with 1000
timesteps [35] and that on FFHQ is a continuous-time one [20].
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