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Algorithmic discrimination and fairness interventions

Machine Bias

There's software used across the country to pre re criminals. And it's biased against blacks.

UK’s A-level grading algorithm ProPublica’ 16

Bias Mitigation for Machine Learning Classifiers:
A Comprehensive Survey

Max Hort, Zhenpeng Chen, Jie M. Zhang, Federica Sarro, Mark H

Abstract—This paper provides a comprehensive survey of bias mitigation methods for achieving fairness in Machine Learning (ML)
models. We collect a total of 341 publications concerning bias mitigation for ML classifiers. These methods can be distinguished based on
their intervention procedure (i.e., pre-processing, in-processing, post-processing) and the technology they apply. We investigate how
existing bias mitigation methods are evaluated in the literature. In particular, we consider datasets, metrics and benchmarking. Based on
the gathered insights (e.g., What is the most popular fairness metric? How many datasets are used for evaluating bias mitigation
methods?). We hope to support practitioners in making informed choices when developing and evaluating new bias mitigation methods.

Index Terms—fairness, bias mitigation, machine learning
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An information-theoretic perspective
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« [Achievability]. Design algorithms to find both accurate and
group fair ML models.

« [Converse]. For a fixed data distribution, what is the |
information-theoretic limit of accuracy and group fairness, STEl focus of
beyond which no model can achieve. this paper
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Fairness Pareto frontier for classification tasks

(o

efinition. For a data distribution Ps x y and o« > 0, we define\

FairFront(a) = max accuracy

s.t. fairness metrics < «

where the maximum is taken over all probabilistic classifiers h.
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Examples of group fairness metrics

FAIRNESS METRIC DEFINITION
Statistical Parity IPr(Y =9|S=5) —Pr(Y=9|S=5")| < as
Equalized Odds IPr(Y=9¢|S=5Y=y)—Pr(Y=¢|S=5,Y =9)] < o

Overall Accuracy Equality  |Pr(Y =Y[S =s) —Pr(Y =Y|S = ¢')| < aoue

S: (sensitive) group attributes, X: input features
Y: true label, V: predicted outcome



Rewrite fairness Pareto frontier

o

linear program
with 8 variables!

/ FairFront(«)

-

A
= IMnax
classifier h

s.t. fairness metrics < «

?
= max
P\?|Y,S

s.t. fairness metrics < «

accuracy functional \
optimization

accuracy

Py s €10,1* N {TNR+FPR = 1} N {FNR + TPR :y

Both accuracy and group fairness metrics can be written in terms of P\?IY S

Group O

Group 1

TNR

FPR

TNR | FPR

P\?|v,s -

FNR

TPR

FNR | TPR

€[0,18N{TNR+FPR =1} N {FNR + TPR = 1}



There is an issue...

Not every Pyy 5 in [0,1]° N {TNR + FPR = 1} N {FN
corresponds to a feasible classifier h.

R+TPR =1}

Set of all conditional distributions
P Y|Y,S

Achievable set

C

classifier hq

classifier ho




Main theoretical result

COMPARISON OF EXPERIMENTS

DAVID BLACKWELL
HOWARD UNIVERSITY

1. Summary

Bohnenblust, Shapley, and Sherman [2] have introduced a method of compar-
ing two sampling procedures or experiments; essentially their concept is that one
experiment a is more informative than a second experiment 8, a o B, if, for every
possible risk function, any risk attainable with g is also attainable with a. If a is
a sufficient statistic for a procedure equivalent to B, a > B, it is shown that
a 2 B. In the case of dichotomies, the converse is proved. Whether > and > are
equivalent in general is not known. Various properties of > and > are obtained,
such as the following: if « > B and 7 is independent of both, then the combina-
tion (a, v) > (B, v). An application to a problem in 2 X 2 tables is discussed.

Apply Blackwell’s

results >

to characterize the
achievable set.

Achievable set

C

Theorem. The set C is the collection of all conditional distributions P\?'S y S:t.
Forany k € N and any {a; | a; € [-1,1]4% i € [K]},

C
T T
ma, A,pit <E I a(X
;z-e[if a; Aupy} < [grelf[%{az g( )}],

where p; = (P

Y|S,Y(g|17 1)7 T 7P?|S,Y(Q|A7 C))Ts Au — diag(,ul,la o muA,C)

with pi5,, = Pr(S =s,Y =y), and g(z) = (Psyx(1,1]z), -, Psyx(4, C|z)).




An iterative algorithm to approximate FairFront

Step 1. Find an optimal conditional distribution over a relaxed achievable set.

5k
P\?g,s

o _
P\?|Y,S = argmax accuracy
P\?|Y,S

s.t. fairness metrics < «

P\?|Y,s < &




An iterative algorithm to approximate FairFront

Step 2. Use Blackwell’s results to refine the relaxed achievable set.

sk
P\“@/,s

e

Solve a DC program to max this distance

c
min  E |max{alg(X)}| — masxc {aTA ot
a;€[—1,1]4¢ [ie[kz]{ zg( )}] ;ie[k]{ i upy}
ic[k] —

Intuition: find a piecewise linear function that

separates P$|Y S from the achievable set.



An iterative algorithm to approximate FairFront

Step 1. Find an optimal conditional distribution over a relaxed achievable set.

o _
P\?|Y,S = argmax accuracy
P\?|Y,S

s.t. fairness metrics < «

Fyys € Q




An iterative algorithm to approximate FairFront

Step 2. Use Blackwell’s results to refine the relaxed achievable set.

Solve a DC program to max this distance

a;e[—1,1 i€ k]
1€[k]

7

c
min]AC E [max{a?g(X)}] — Z Ilrel?ls]c {azTAup%} .
g=1
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Tightness of our upper bound

» Our algorithm provides an upper bound estimate of FairFront.
« Existing (group) fairness interventions provide lower bounds.

Adult COMPAS
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Figure 1: We compare Reduction and FairProjection with (our upper bound estimate of)
FairFront on the Adult (Left) and COMPAS (Right) datasets. We train a classifier that approximates
the Bayes optimal and use it as a basis for Reduction and FairProjection. This result not only

demonstrates the tightness of our approximation but also shows that SOTA fairness interventions
have already achieved near-optimal fairness-accuracy curves.

Our numerical experiments are semi-synthetic since we apply fairness interventions to train classifiers using the entire dataset and resample
from it as the test set. This setup enables us to eliminate the estimation error associated with our algorithm.
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Aleatoric and epistemic discrimination

Aleatoric discrimination captures inherent biases in the data distribution that can
lead to unfair decisions in downstream tasks.

Epistemic discrimination is due to algorithmic choices made during model
development and lack of knowledge about the optimal “fair” predictive model.

COMPAS
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Figure 2: We benchmark existing fairness interventions using (our upper bound estimate of) FairFront.
We use FairFront to quantify aleatoric discrimination and measure epistemic discrimination by

comparing a classifier’s accuracy and fairness violation with FairFront. The results show that SOTA
fairness interventions are effective at reducing epistemic discrimination.
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We borrow this notion from ML uncertainty literature (see Hullermeier and Waegeman, 2021, for a survey).



Fairness in missing values

» Real-world data often have missing values, and the missing patterns can be different
across different protected groups

« When population groups have disparate missing patterns, aleatoric discrimination
escalates, leading to a sharp decline in the effectiveness of fairness intervention

algorithms.
Adult COMPAS
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Figure 3: Fairness risks of disparate missing patterns. The missing probabilities of group O (female
in Adult/African-American in COMPAS) and group 1 (male in Adult/Caucasian in COMPAS) are
varying among {(10%, 10%), (50%, 10%), (70%, 10%)}. We apply Reduction and Baseline to
the imputed data and plot their fairness-accuracy curves against FairFront. As shown, the effectiveness
of fairness interventions substantially decrease with increasing disparate missing patterns in data.
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