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|
ODE Models in Convex Optimization

min f(z)
zeR?

Nesterov's accelerated gradient method (AGM):!
Yr+1 =z — sV [ (21)
k-1

Th4+1 = Yk+1 T Fro (Y1 — k) -

Continuous-time limit of AGM:2

K1) + %X(t) + VX)) = 0.

Goal: Develop a systematic methodology for
analyzing convergence rates of ODE models.

!Nesterov, “A method for solving the convex programming problem with convergence
rate O(1/k?)".
2Su, Boyd, and Candes, “A differential equation for modeling Nesterov's accelerated

gradient method: Theory and insights”.
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|
Discrete-Time PEP (Drori and Teboulle)

General form of first-order methods:
k

Tpr =25 — Y heVI(2)), (1)

J=0

parametrized by the coefficients {hy ;}.

Proving convergence rate of (1)

)

Veryfing positive semidefiniteness of matrix?

2T Mz > 0 Va.

Drori and Teboulle, “Performance of first-order methods for smooth convex

minimization: A novel approach”.
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|
Continuous-Time PEP (Ours)

General form of continuous-time models:
t
X)) = - [ Hen)VIX()dr 2)
0
parametrized by the H-kernel H (¢, 7).*

Proving convergence rate of (2)

)

Veryfing positive semidefiniteness of integral kernel?

2[f k(t, ) f(t)f(r)dtdr > 0 Vf.

*Kim and Yang, "Unifying Nesterov's Accelerated Gradient Methods for Convex and

Strongly Convex Objective Functions”.
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Continuous PEP for Minimizing Function Values

X(t) = - /0 H(t, )V F(X (1)) dr )

Theorem (Function Value PEP)

Given v > 0, Lagrange multiplier \(t). Then, (2) achieves
FX(T) = f(z*) < vllzo — 2*|1%,

if the following symmetric PEP kernel is positive semidefinite:

S(t,7)=v <)\(t)H(t,7) + A(t) / H(s,T) ds) - %A(t)x(r), t> T

v

@ Can be extended to strongly convex case (u > 0).
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Continuous PEP for Minimizing Function Values

AGM ODE:

X(t) + %X(t) + V(X (t) =0

2
> T3
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Continuous PEP for Minimizing Gradient Norms

X(t) = - /0 H(t, )V F(X (7)) dr )

Theorem (Gradient Norm PEP)

Given v > 0, Lagrange multiplier A\(t). Then, (2) achieves
IVAX(@TNI? < 4v(f (o) — f(a¥)),

if the following symmetric PEP kernel is positive semidefinite:

H(t, T AT t MNONT
S(t,T)—y( A(;T))JFA((T)L/T H(t,s)ds) _zA((t))ZA((T))?’ t>T.

o Can be extended to strongly convex case (1 > 0).

e Can also prove convergence rates on || X (T)]2.
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Continuous PEP for Minimizing Gradient Norms

OGM-G ODE:®
X(t) + TiX(t) +Vf(X(@)=0
o X(t) = / HW( () dr.
2
Y

) =v-25) @=Hr=r) t%(T ™) = 0 when v >

With \(t) = % we have S(

T

S(t, )

IVFXENI? < o (7o) — Fa)).

Continuous-Time Analysis of Accelerated Gradient Methods

®Suh, Roh, and Ryu, *
via Conservation Laws in Dilated Coordinate Systems
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Correspondence Between Minimizing Function Values and
Minimizing Gradient Norms

) t.3 ] t
()=~ / Svsear X = [ ey

(T —7)3
so(t,m) = (v 2 ) T

Anti-transpose relationships:
HE(t,7) = HS(T — 7, T — t)
SE(t,7) = 8T -7, T —t)
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Correspondence Between Minimizing Function Values and
Minimizing Gradient Norms

X(t) = / HE (1, 7)V £(X (1)) dr F)

X(t) = / HO (1, 7)V £(X (7)) dr (6)

Theorem (Correspondence between F and G)

If HY(t,7) = HS(T — 7, T — t), then the following are equivalent:
o (F) achieves f(X(T)) — f(z*) < v||zo — x*||%.
o (G) achieves ||V f(X(T))||* < 4v(f(w0) — f(a*)).

@ Can be extended to strongly convex case (1 > 0).
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Conclusion

Contributions

We introduced Continuous PEP, a systematic methodology for analyzing
ODE models in convex optimization.

@ Enhances the understanding of continuous-time analysis.

@ Unlocks new opportunities for studying discrete-time PEP.
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