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lookalike clustering for anonymous learning and model generalization

e Problem: We are given a supervised learning task and would like to
protect a set of sensitive features during the training phase.

e Questions:

o How to protect privacy, while still making personalized prediction?
o What is the measure of privacy?
o Is privacy protection in conflict with model generalization?

o If yes, how does this trade-off shape under different problem
parameters? (e.g., overparameterization, signal-to-noise-ratio, data
quality, etc)



Model

e Linear regression:

Y = xI'g, + x1.0,. + z
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« n: size of training data,
« p: dimension of sensitive features
« d — p: dimension of non-sensitive features

We focus on high-dimensional asymptotics, where the size of training data,
number of sensitive/ insensitive features grow in proportion.
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Lookalike clustering for anonymous learning and model generalization

e Our approach: We follow a natural technique called “look-alike clustering’
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1. Cluster users based on non-private information
2. Within each cluster, replace users’ sensitive features with a common representation

(center of cluster)

Privacy measure? We obtain k-anonymity on sensitive features if min size cluster is at least k.




Privacy- model generalization tradeoff

Common belief: protecting users privacy conflicts with model generalization

e Modern deep NNets have remarkable generalization property, and they often
perform in overparameterized regime (memorize/interpolate training data)

e Similar behavior is observed for random forests, Adaboost, kernel methods

e For mixture of subpopulation data, [Feldman 20] shows label memorization is
necessary for optimal generalization, under long-tailed distribution

e Itis beyond label memorization: [Brown et. al 21] studies setting where optimal
generalization requires memorizing high-entropy / high-dimensional covariates
information

We present a different picture for anonymity via lookalike modeling!



Precise characterization of model generalization

> We provide a precise characterization of model generalization, using techniques from
Convex-Gaussian minimax-theorem (CGMT) [Thrampoulidis et a. 2015]

> Our theoretical analysis allows to understand role of different parameters (e.g. size/number
of clusters, cluster separation, overparameterization, SNR) on model generalization.
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When does lookalike clustering improve model generalization?

A = (generalization error of non-lookalike) / (generalization error of lookalike)

log(A)

SNR = r/o

SNR = (strength of 6,)/(noise std) = [16]]
()

In low SNR look-alike-clustering improves generalization, in addition to k-anonymity.




Intuition on better generalization in low SNR?

+ Atlow SNR, noise is comparable with the heterogeneity within cluster.

* By replacing sensitive features with cluster center, look-alike clustering acts as a
regularization to avoid overfitting.




