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Problem statement



Data assimilation

Data assimilation (DA) addresses the problem of inferring the posterior
distribution
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Markovian prior

for dynamical systems (atmospheres, oceans, ...) given noisy or incomplete
observations.




How to use score-based generative modeling to
approximate the posterior p(x,.; | y) ?

How to exploit the Markovian structure of z,.; ?



Score-based generative modeling

1. Data samples z ~ p(zx) are continuously (from ¢ = 0 to 1) transformed
into noise through a stochastic diffusion process

dz(t) = f()z(t) dt + g(t) dw(?)
such that p(z(0)) ~ p(x) and p(z(1)) ~ N (0, I) and
p(z(t) | ©) = N (2(t) | p(t)z,0(t)"T)
2. The reverse process
dz(t) = [ £(t)z(t) — g(£)* Vi logp(z(t))] dt + g(t) dw(t)

can be simulated (from ¢t = 1 to 0) to generate new data from p(z(0)).

3. The score function V., logp(z(t)) is approximated with a score network
| z(t)
s4(x(t),t) trained to solve

. 2
arg min Ko @)p(t)p(z(t) | o) [U(t)2H3¢(=’B(t)»t) — Vo) log p(z(t) | fE)H ]



To generate trajectories from p(z,., | y), we have to replace V,; log p(z(?))
with the posterior score

Ve, @ logp(zq.(t) | y) =
Ve, . logp(xq.0(8) + V. () logp(y | z1..(2))

prior score likelihood score

In the reverse process.



Methods & contributions



How is your blanket?
Let z, denote a Markov blanket of z; within a set z;,;, such that

p(az | x#%) p(m | xb)
Consequently,
V:c,i lng(CUl:L) — va:,b lng(CIZ“ xbi)

Not true for ., (¢), but there exists b, D b, such that

Vz,(t) log p(x4.1,(¢)) ~ Vz, (1) 10%?(%@)7 Lp, (t))
meaning that each element of the prior score can be determined locally.
For a first-order Markov chain, z, = {%;_;,;,;} and

Vz, (1) log p(z1.., (1)) ~ Vz, () log p(Z;_.i4k(t))

fork>1butk <« L.



How is your blanket?

Forward SDE (data — noise)
dz(t) = f(t)z(t)dt + g(t)dw(t) ——— z1.1(¢)
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21:1,(0) «—— da(t) = [f()z(t) — 9(t)” Vi) log p(x(t)) | dt + g(t)dw(?)
Reverse SDE (noise — data)

Figure 1. We compose the outputs of a score network sy (z; 4.;,%(t),t)

trained over short segments z,_,.;., to approximate the prior score.



Stable likelihood score

Assuming a Gaussian observation process p(y | z) = N(y | A(z),%,),
Chung et al. (2023) propose the approximation

p(y | z(t) ~ N(y | A(Z(2(t))),%,)
where Tweedie's formula gives

2(t) + o(t)*sy(z(2), )
pu(t)

which allows to estimate the likelihood score in zero-shot.

z(z(t)) = Elz | z(t)] ~

We introduce a more accurate and more stable approximation

p(y | z(t)) » N (y | A(z(z(1))), E, + 0(t>2AFAT)
p(t)

where I" depends on the eigendecomposition of ¥, and A = %—fb(w(t» IS
the Jacobian of A.



Predictor-Corrector sampling

To simulate the reverse process we adopt the exponential integrator (EI)
discretization scheme introduced by Zhang et al. (2023)
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p(t) p(t) o(t)
To prevent errors from accumulating along the simulation, we perform C
Langevin Monte Carlo corrections

z(t — At)

z(t) +

T(t) < x(t) + ds,(x(t), 1) + V20¢e

between each step of the discretized reverse process.



Results
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Figure 2. SDA works for challenging high-dimensional problems.
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Figure 3. SDA converges to the true posterior as k and C' increase.
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Figure 4. SDA inference is diverse and
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consistent with the observation.



A(xr) +1n

1 Physical model

Figure 5. SDA inference is consistent with the physical model.
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