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Circuit Designing Optimization

▶ Pre-layout design is a key stage in Analog circuit design flow.
▶ It can be represented as Parameter-to-Specification (P2S) problem.

The goal is:
▶ Find optimal design parameters (e.g: Transistor widths, lengths, reference current

and voltages etc) to meet desired circuit specifications (e.g: Gain, Unity Gain
Bandwidth, Gain Margin, Phase Margin etc)

Figure 1: Circuit Design Optimization framework

(MISN, IITD)
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Conventional Design Flow

Figure 2: Iterative process until Convergence is met

(MISN, IITD)
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Contributions

▶ We introduce Graph of Circuits Explorer, a graph representation of circuit instances
incorporating feature and label information.

▶ Graph of Circuits Explorer-Graph Surrogate Model (GCX-GSM), incorporating
semi-supervised learning was proposed which acts as a proxy to SPICE simulations.

▶ GCX-GSM is further integrated with two newly introduced optimization algorithms:
▶ Efficient Analog Sizing via Constrained Optimization (EASCO)
▶ Analog Sizing through Real-Time Online Graphs (ASTROG)

to obtain the most optimal design parameters.
▶ We further propose a comprehensive technique of feature generation which facilitates

knowledge transfer across different technology nodes and topologies.

(MISN, IITD)
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Traditional Machine Learning and Deep Learning Frameworks

▶ A Bayesian Optmization Framework for Analog Circuit Optimization: BO-EI [1]
▶ An Efficient Analog Circuit Sizing Method based on Machine Learning assisted Global

Optimization: ESSAB [2]
▶ Differential evolution and swarm intelligence techniques for analog circuit synthesis.[3]

Limitations:
▶ High Time-complexity.
▶ Reliance on extensive labeled datasets.

(MISN, IITD)
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Introduction to Graph representation of Circuits

What is a Graph?
▶ A graph is a data structure used to store semantic information with the help of

structure formed using nodes and edges.
▶ A graph with features is denoted by G = (V,E,W,X, Y ) where V = {v1, v2, . . . , vn}

is the vertex set, E ⊆ V × V is the edge set and W is the adjacency (weight) matrix.
▶ X ∈ Rn×d = [X1, X2, ..., Xn]

T and Y ∈ Rn×m = [Y1, Y2, ..., Yn]
T are the feature

matrix and label matrix respectively.
▶ Xi ∈ Rd and Yi ∈ Rm are feature and label vectors for node i in graph G.

Figure 3: Graph representation

(MISN, IITD)
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Introduction to Graph representation of Circuits

Graph representation of Analog and Mixed signal circuits
▶ Most common approach: Represent circuit’s topology as a graph.
▶ Circuit components like resistors, capacitors etc are nodes and circuit wirings are

edges [4] (ParaGraph).
▶ To this [5] (Pre-training GNNs) suggested each device terminal be considered node

which makes edges featureless.
▶ This results in a heterogeneous graph and a corresponding graph-regression problem.
▶ Set of n graphs denoted by {G1, G2, . . . , Gn}, a function f maps these graphs to

corresponding performance metric (Yi), where Yi = f (Gi) .

(MISN, IITD)
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Introduction to Graph representation of Circuits

Figure 4: The figure (a) depicts two distinct methods for representing circuits as a graph. In [4]
circuit components are depicted as nodes while nets carry edge-based information. To this, [5]
suggested explicitly representing device terminals as nodes to avoid ambiguity when the device has
identical net connections between two or more terminals. Meanwhile, in figure (b), we can see the
training framework of ParaGraph [4] method. For the example circuit used, multiple graphs and
corresponding label vectors are used for training, and prediction on the unlabelled graph is
performed.

(MISN, IITD)
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Motivation

▶ As the circuit size increases, the graph becomes densely interconnected, leading to a
large number of nodes and edges, making it challenging to comprehend the overall
behavior of the circuit.

▶ Creating a large labelled graph dataset is time-consuming and computationally
expensive, which hinders effective GNN training.

▶ This framework lacks inter-graph connections, which reduces its reliability.

(MISN, IITD)
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Motivation

▶ Graph regression problems cannot be applied to semi-supervised frameworks; reliance
on labelled datasets is inevitable.

▶ Training over multiple graphs (n) with N nodes and E edges when passed through L
layer GNN makes the process slow, and the high time-complexity O(n ∗ LN2E) and
space-complexity O(n ∗N2L) further adds to the computational burden.

▶ Transferring knowledge across different topologies becomes challenging due to
varying graph sizes.

(MISN, IITD)
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Problem Formulation

Given n = l + u circuit instances and their parameters X = (Xl, Xu) along with labels
of only l number of circuit instances as, Yl, how can we predict the labels of the
remaining u number of circuit instances Yu?

▶ The circuit performance parameters or the labels Yi are obtained using expensive
SPICE simulation; large set of labelled data is a luxury.

▶ Limited labelled data where l < u is a significant hurdle in learning models for EDA.
▶ Graph-based Semi-supervised learning attempts to address this by learning from both

labelled as well as unlabelled data.

(MISN, IITD)



14/73

Problem Formulation

▶ Consider sets Tl = {(Xi, Yi)}li=1 ∈ X × Y and Tu = {(Xi)}l+u
i=l+1 ∈ X , where X is

the domain set and Y is the label set.
▶ Suppose the elements of the set Tl be sampled from probability distribution P over

the ordered pair X × Y. Samples of the domain set Xi ∈ X will follow the marginal
distribution PX of P.

▶ For the limited labelled data scenario, the goal of a learning algorithm is to estimate
conditional distribution P(Y |X) using both the labelled and unlabelled data as the
training data.

▶ The guiding principle is that if two data points from the domain set are close in the
intrinsic distribution PX then the corresponding conditional distributions should be
similar. For the circuit prediction, it means that given two circuit instances with
similar features Xi ∼ Xj then the corresponding label vectors should also be similar
Yi ∼ Yj .

(MISN, IITD)
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Proposed Framework for Semi-Supervised Learning on Graph of
Circuits

▶ Obtaining feature-aware geometrical representation; Construct a graph of circuits
using circuit features X = (Xl, Xu) in the form of an adjacency matrix A.

▶ Using the graph adjacency matrix, feature matrix, and available set of circuit
performance matrix together, i.e., G(X,A, Yl) with the graph neural network pipeline
to build a machine learning model.

▶ Additionally, incorporating available label information resulting in label informed
Graph of Circuits.

▶ Predicting the performance parameters Yu corresponding to X ′
us.

(MISN, IITD)
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Proposed Framework for Semi-Supervised Learning on Graph of
Circuits

Algorithm 1 GCX(GSM) assisted Optimization
Input: Feature matrix (Xl, Xu), label matrix (Yl)
Output: Optimal design (X∗

i )

1. G (V,E,W ) ←− Learning Graph of Circuits Using (Xl, Xu)

2. G
(
V, Ẽ, W̃

)
←− Label informed Graph of Circuits using (Xl, Xu, Yl)

3. Yu ←− Label prediction of unlabeled circuits using GNN/KGR with
G(V,E,W,Xl, Xu, Yl); Select the most efficient surrogate model

4. GCX(GNN) ←− G (V,E,W,Xu, Xl, Yl) + GNN; surrogate model

5. X∗
i ←− GCX(GNN) + EASCO/ASTROG

(MISN, IITD)
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Proposed Framework for Semi-Supervised Learning on Graph of
Circuits

Figure 5: Graph of Circuits Explorer (GCX): The dataset (D) contains both labeled (Xl,Yl) and
unlabeled (Xu) samples, each circuit is a node of the graph and corresponding feature vector of
the associated node serves as node in the graph; the graph is learned (weighted adjacency-W)
using the suggested formulation; and the learned graph is passed through a GSM for label
prediction of unlabeled nodes. This forms a GCX(GSM) surrogate model. For the above circuit
Xli = (Vdd,W1, L1,W2, L2, Vin) and Yli = V o.

(MISN, IITD)
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How to Learn Graph of Circuits to Encode Circuit Similarity

▶ Feature matrix of circuit instances X = [X1, X2, . . . , Xn]
T where Xi is the feature of

ith circuit which corresponds to ith node of a graph.
▶ Underlying assumption is that the signal residing on the graph changes smoothly

between connected nodes [6].
▶ If two circuit instances Xi and Xj have similar features, Euclidean distance
∥Xi −Xj∥2 should be smaller; wij should be large.

▶ The Dirichlet energy (DE) is used for quantifying the smoothness of the graph signals
which is defined as:

DE =
1

2

∑
i,j

wij ∥Xi −Xj∥2

▶ The lower value of Dirichlet energy indicates a desirable configuration [6, 7].

(MISN, IITD)
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How to Learn Graph of Circuits to Encode Circuit Similarity

▶ Nodes connected with stronger weights indicate similar features and performance
indices, facilitating knowledge transfer to new circuit instances.

▶ Finally, we learn a weighted adjacency matrix W by minimizing the Dirichlet energy
combined with other sparsity regularization terms which entails solving the following
optimization problem:

w := arg min
w∈ wm

1

2

∑
i,j

wij ∥Xi −Xj∥2 − α1⊤ log (Sw) + β∥w∥22

▶ where α > 0 and β ≥ 0 controlling the properties of the resultant graph, ∥w∥22
ensures the graph is sparse, while 1⊤ log (Sw) ensures that every node will have some
connections.

(MISN, IITD)
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How to Learn Graph of Circuits to Encode Circuit Similarity

▶ To enhance the graph structure, we propose the incorporation of additional
information, specifically related to the labeled samples.

▶ Identify the prominent features (Ximp) corresponding to the labeled instances. A new
feature vector, denoted as X̃i = [Ximpi, Yi] created, where Yi represents the label of
the ith circuit instance.

▶ The new Dirichlet’s energy represented by D̃E, can be expressed as follows:

D̃E =
∑
i,j

w̃ij ||X̃i − X̃j ||2

▶ The newly obtained weighted adjacency can be represented as :

wLIG = w + w̃

▶ wLIG represents label-informed graph (LIG), w represents feature based weighted
adjacency matrix and w̃ represents the weighted adjacency matrix derived from the
additional information.

(MISN, IITD)
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How to Learn Graph of Circuits to Encode Circuit Similarity

Figure 6: Graph of Circuits: n points are uniformly sampled across the d-dimensional space; l
points are simulated where l << n. Graph is learnt using the formulation discussed previously.

(MISN, IITD)
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Homophily Analysis

Homophily in graphs is based on similarity between connected node pairs, where two
nodes are considered similar if they share similar node label. Homophily ratio is defined
based on [8]. While there exists multiple metrics to quantify homophily, we adopt
assortativity as it is easily generalized to nodes and edges.

▶ Label based Homophily
▶ Given a graph G(V,E) and node label vector y, the edge homophily ratio is defined as

fraction of edges that connects the nodes with similar labels.

h (G, {yi; i ∈ V }) =
1

|E|
∑

(j,k)∈E

1 (yj ∼ yk)

▶ Where |E| is number of edges in graph and 1 is the indicator function. A graph is
typically considered highly homophilous when h(.) is typically large (typically,
0.5 ≤ h(.) ≤ 1).

(MISN, IITD)
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Homophily Analysis

▶ Global Node Label Assortativity
▶ Global assortativity measures the overall tendency of nodes with similar characteristics

to be connected to each other in a network.
▶ It provides an understanding of the network’s general structural pattern.
▶ The global node assortativity can be defined as:

rglobal
n =

∑
i eii −

∑
i aibi

1−
∑

i aibi
▶ where, eij is the fraction of the edges corresponding to similar/dissimilar quantized

distance (∥yi − yj∥2) among the circuit instances, ai =
∑

j eij , bi =
∑

i eij .
▶ When nodes with similar features tend to connect with each other, rglobal

n → 1, the
graph exhibits strong homophily.

(MISN, IITD)
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Homophily Analysis

▶ Local Node Label Assortativity
▶ Local assortativity examines the tendency of nodes to form connections with similar

nodes in their immediate neighborhood (i.e., their 1-hop neighbors).
▶ Allows for a more fine-grained analysis of the network, as it considers node

characteristics within smaller subgraphs or neighborhoods.
▶ The local node label assortativity can be defined as :

rlocal
n (u) =

|{v} : v ∈ N(u) ∧ yu ∼ yv |
|N(u)|

;u ∈ V

▶ where, |N(u)| denotes the 1-hop neighborhood of node u, yu denotes quantized label
vector of node u.

(MISN, IITD)
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Graph of Circuits Explorer-Graph Neural Networks (GCX-GNNs)

▶ After learning a graph using the feature vector description provided, the graph
undergoes label propagation through the GNN architecture.

▶ In this process, each node represents a circuit instance and the graph consists of both
labelled and unlabelled nodes.

▶ During each layer of the GNN, the nodes interact through message passing, and
feature aggregation is carried out.

(MISN, IITD)



26/73

Graph of Circuits Explorer-Graph Neural Networks (GCX-GNNs)

▶ The unlabelled circuit instance acquires information from its labelled neighbors in the
form of embeddings.

▶ The embeddings are iteratively updated across the L layers of the GNN, ultimately
leading to the prediction of a label for the unlabelled circuit instance (node).

▶ The formulation for the embedding update can be understood from the equation
given below:

h(k)
u = σ

(
W

(k)
self h

(k−1)
u +W

(k)
neigh

∑
v∈Nu

h(k−1)
v + b(k)

)

▶ h
(k−1)
u ∈ Rd(k−1)

: Node embeddings of target node u at layer k.
W

(k)
self ,W

(k)
neigh ∈ Rd(k)×d(k−1)

: are the learnable parameters, b(k) ∈ Rd(k)

: represents
the bias term and σ: represents elementwise non-linearity (e.g., a tanh or ReLU).

(MISN, IITD)
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Graph of Circuits-Graph Neural Networks (GCX-GNN)

Figure 7: Message passing in GNNs: Graph is passed through the GNN architecture; nodes
interact with each other via message passing and feature aggregation for target node is carried
out. Unlabeled nodes gather information from its labeled neighborhood in form of embeddings.
Embeddings updated over L layers is used for label prediction. To better understand GNN
architectures, refer: [9, 10, 11].

(MISN, IITD)
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Graph of Circuits Explorer-Kernalized Graph Regression (GCX-KGR)

▶ The graph signal at any time instant k is defined by a vector
Yk = [Yk,1, Yk,2, . . . , Yk,n]

T with Yk,n ∈ R being the signal value at node n.
▶ The graph Laplacian is associated with total variation metric ν(Y ) of a signal Y :

ν(Y ) = Y TLY =
∑
i<l

Ai,l (Yi − Yl)
2

▶ The model is estimated in terms of a matrix W ∈ RM×n such that:

Yn = WTϕ (Xn)

▶ where Yn is an estimate of the target signal tn and ϕ : RM → RM is an unknown
function of the input signal.

(MISN, IITD)
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Graph of Circuits Explorer-Kernalized Graph Regression (GCX-KGR)

▶ The optimal parameter matrix W is obtained by minimizing the cost function:

C(W) =

N∑
n=1

∥tn − Yn∥22 + α tr
(
WTW

)
+ β

N∑
n=1

ν (Yn)

▶ This formulation works in a supervised setting; we addressed the issues with
generating large labeled datasets hence convert it into a semi-supervised learning
framework.

(MISN, IITD)
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Graph of Circuits Explorer-Kernalized Graph Regression (GCX-KGR)

▶ Thus, given a set of l labeled circuit instances {(Xi, Yi)}li=1 and a set of u unlabeled
circuit instances {(Xj , )}l+u

j=l+1 the new formulation becomes:

C(W) =

l∑
n=1

∥tn − Yn∥22 + γA tr
(
WTW

)
+

γI
(l + u)2

N∑
n=1

ν (Yn)

▶ where γA controls the complexity of the function in the input feature space and γI
controls the complexity of the function in the transformed space (graph structure)
[12, 13].

(MISN, IITD)
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Graph of Circuits Explorer-Kernalized Graph Regression (GCX-KGR)

Figure 8: Kernalized Graph Regression (KGR): By considering the geometry of marginal
distribution, the model leverages the assumption that points in proximity have similar labels
(smoothness assumption); Label propagation to nearby unlabeled samples is based on this
principle.

(MISN, IITD)
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Efficient Analog Sizing via Constrained Optimization (EASCO)

Static Optimization framework
▶ Data generation phase: n points are uniformly sampled from a d-dimensional feature

space such that Xi ∈ [ai, bi].
▶ This creates a dataset (D) such that D ∈ Rn×d.
▶ Graph Learning: (as previously discussed) using all the n sampled points, with a

subset of these points simulated under different labeled data settings (p), such as
30%, and 50%, by adopting a semi-supervised learning framework.

(MISN, IITD)
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Efficient Analog Sizing via Constrained Optimization (EASCO)

▶ The labelled points, Xtrain ∈ Rp×d are used for training, while the rest,
Xtest ∈ R(n−p)×d are reserved for testing.

▶ In the third component, GSMs [9, 10, 11, 12, 13] are used to make predictions.
▶ Constrained Optimization: With constraints in place, the process returns a subset of

the original search space D̂ ∈ Rk×d where k << n.
▶ The objective function is optimized using Differential Evolution (DE) algorithm [14]

applied to the resulting parameter space, yielding the most optimal parameters.

(MISN, IITD)



34/73

Efficient Analog Sizing via Constrained Optimization (EASCO)

Figure 9: GCX-EASCO algorithm: Initially points are uniformly sampled and labels are generated
based on the value of p; graph G (V,E,W,Xu, Xl, Yl) is learned using all the points based on
features; GNNs in a semi-supervised framework learn the embeddings corresponding to labeled
samples, which are used for label prediction corresponding to unlabelled nodes G (V,E,W,X, Y ).
Ultimately, constrained optimization over the subset D̂ of the original dataset gives optimum
parameters X∗

i .

(MISN, IITD)
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Analog Sizing through Real-Time Online Graphs (ASTROG)

EASCO efficiently minimized simulations once coarse boundaries were established.
However, handling an increasing number of specifications made it challenging to identify
these boundaries.

Dynamic Optimization Framework
▶ Initially, a dataset (D) is generated with α samples such that D ∈ Rα×d.
▶ All designs in the database are ranked using the adopted infill sampling criterion [2],

and the λ best designs are selected.
▶ New bounds X̃i = [ãi, b̃i] are obtained based on these designs, where X̃i ∈ Rλ×d.

(MISN, IITD)
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Analog Sizing through Real-Time Online Graphs (ASTROG)

▶ The Differential Evolution (DE) algorithm [14] is used to optimize the objective
function within the newly obtained bounds.

▶ Graph is learnt (with the previously discussed approach) by combining the features of
best λ labeled points with the m unlabeled points obtained from the DE algorithm.

▶ The obtained graph is passed through the pre-trained GSMs and labels are predicted
for the m unlabeled nodes.

(MISN, IITD)



37/73

Analog Sizing through Real-Time Online Graphs (ASTROG)

▶ After the label prediction, the λ+m labeled points are re-ranked using the infill
sampling criterion [2].

▶ The optimal design and its corresponding performance metric (label) are then
selected from the λ+m labeled points and incorporated into the original database.

This process is repeated until the predetermined iteration budget for each circuit is
exhausted.

(MISN, IITD)
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Analog Sizing through Real-Time Online Graphs (ASTROG)

Figure 10: GCX-ASTROG algorithm: The process starts with sampling and labeling a small set
of points (α). A novel sampling criterion guides the algorithm towards a specific feature space
region. The top λ points create a population (P) for the DE algorithm, generating m unlabeled
points at every iteration of ASTROG. A semi-supervised learning framework uses λ+m points to
learn a graph G (V,E,W,Xu, Xl, Yl). A pre-trained GNN propagates labels over the m points at
each iteration. The best solution is integrated into the original dataset, and the process continues
until the iteration budget is met.

(MISN, IITD)
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Experiments

▶ Experimental results of our two proposed algorithms: EASCO and ASTROG.
▶ To evaluate the effectiveness of these algorithms, we chose Two-stage OTA with

Miller Compensation which is operating mostly in a linear region, and the Ring
Oscillator (Three-stage) which is operating mostly in a nonlinear region as our test
cases.

▶ The Miller Compensated OTA has 11 design variables, while the Ring Oscillator has 6
design variables.

▶ The performance evaluation of our algorithms was conducted using multiple metrics,
which will be discussed in detail later.

(MISN, IITD)
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Experiments

Test Case-1: Amplifiers

Figure 11: Schematic of Miller Compensated Two-stage OTA

(MISN, IITD)
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Experiments

Figure 12: Parameter-to-Specification (P2S) problem

(MISN, IITD)
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Experiments

Feature based Graph Learning

Figure 13: Sparse Graph Learning: Feature based Graph of Circuits (n= 30 nodes for
representation) and its corresponding heatmap.

(MISN, IITD)
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Experiments

Homophily Analysis

Figure 14: Global and Local Homophily: Homophily Analysis across each performance metric.
Performed for graph with n= 1k nodes.

(MISN, IITD)
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Experiments

Label Informed Graph Learning

Figure 15: Label informed Graph Learning: Features along with label information based Graph of
Circuits (n= 30 nodes for representation) and its corresponding heatmap.

(MISN, IITD)
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Experiments

Homophily Analysis

Figure 16: Global and Local Homophily: Homophily Analysis across each performance metric.
Performed for graph with n= 1k nodes. Additional information across nodes improves homophily
score.

(MISN, IITD)
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Experiments

Feature based Graph of Circuits
Test-Circuit Overall Global Local

2-stage Amplifier 0.63 0.62 0.64
3-stage Oscillator 0.61 0.63 0.64

Table 1: Overall, Global and Local node label assortativity associated with circuits under study.

Label informed Graph of Circuits
Test-Circuit Overall Global Local

2-stage Amplifier 0.75 0.73 0.62
3-stage Oscillator 0.68 0.65 0.60

Table 2: Overall, Global and Local node label assortativity associated with circuits under study.

(MISN, IITD)
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Experiments

Miller Compensated Two-stage OTA (R2 scores)
GCX(.) Gain (dB) UGB (MHz) GM (dB) PM (deg) Noise (µV ) Power ( µW)

p=30% p=50% p=30% p=50% p=30% p=50% p=30% p=50% p=30% p=50% p=30% p=50%

(GCN) 0.17 0.22 0.36 0.43 0.52 0.81 0.70 0.81 0.35 0.64 0.42 0.61
(SAGE) 0.42 0.60 0.43 0.60 0.89 0.91 0.93 0.94 0.96 0.97 0.97 0.99
(GAT) 0.19 0.41 0.33 0.41 0.89 0.91 0.79 0.85 0.41 0.61 0.60 0.71

Table 3: R2 scores with different GNN architectures (Included value is the mean, averaged across
5 runs)

(MISN, IITD)
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Experiments

Model Gain UGB GM PM Noise Power

GCX(SAGE)-I 0.60 0.60 0.91 0.94 0.97 0.99

GCX(SAGE)-II 0.60 0.58 0.95 0.95 0.99 0.99

ESSAB [2] 0.57 0.50 0.81 0.93 0.89 0.89

Table 4: R2 scores comparison between our best model GCX(SAGE)-I,II and ESSAB [2]
surrogate model.

Model p=30% p=50% p=70% p=90%

GCX(KGR)-I 0.20 0.61 0.65 0.71

GCX(KGR)-II 0.22 0.63 0.68 0.78

Table 5: R2 scores for GCX(KGR) averaged across all the performance metrics for different
labeled data settings.

(MISN, IITD)
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Experiments

The question is why did graph-based model, GCX(KGR) perform poorly?

▶ Traditional graph-based semi-supervised machine learning algorithm
▶ Low computational overhead.
▶ Global optima.

▶ GCX(KGR) suffers from inaccurate predictions in the given problem due to two main
reasons:
▶ Limited availability of labeled data.
▶ Increasing dimensionality of the circuits.

(MISN, IITD)
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Experiments

Figure 17: Optimizing Surrogate Model Selection: A Training Time vs. Accuracy Plot of
Various Models to Identify the Most Suitable Surrogate with the Right Balance of Performance
and Efficiency.

(MISN, IITD)
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Experiments

Miller Compensated Two-stage OTA (Optimization)
Model Gain (dB) UGB (MHz) GM (dB) PM (deg) Noise (nV ) Power (µW ) Success
(specs) Max Min Max Min Max Min Max Min Max Min Max Min (out of 10)
DE [3] 58.6 53.3 190 165 19.2 17.8 46.7 45.0 478 463 815 633 4/10
BO-EI [1] 68.3 65.6 225 190 18.9 17.8 52.0 45.6 470 462 627 505 3/10
EASCO 67.3 64.4 215 192 19.2 18.5 47.2 45.5 470 462 722 490 4/10
ASTROG 80 61.6 145 106 26 23.5 52.5 47.9 497 446 716 318 6/10

Table 6: Comparison table for different optimization strategies [1, 3] with EASCO and ASTROG

(MISN, IITD)
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Experiments

Miller Compensated Two-stage OTA (Optimization)
Model Gain (dB) UGB (MHz) GM (dB) PM (deg) Noise (nV) Power (µW) FOM
DE [3] 58.6 190 18.35 45.02 478.7 766.3 0.040

BO-EI [1] 68.3 192 18 52.8 467 505.3 0.019
EASCO 67.3 205 18.53 46.05 465.5 548.7 0.022

ASTROG 80 112 24.84 52.48 497.3 495.5 0.021

Table 7: comparison table for best case performance metrics with corresponding FOM (The table
displays simulated results corresponding to optimized parameters from different algorithms)

(MISN, IITD)
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Experiments

Figure 18: Optimized Input Design parameters with ASTROG algorithm.

(MISN, IITD)
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Experiments

Timing Analysis

Figure 19: Computational Time comparison corresponding to different optimization algorithms for
Miller Compensated Two-stage OTA

(MISN, IITD)
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Experiments

Test Case-2: Oscillators

Figure 20: Schematic of Ring Oscillator (Three Stage)

(MISN, IITD)
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Experiments

Figure 21: Parameter-to-Specification (P2S) problem
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Experiments

Feature based Graph Learning

Figure 22: Sparse Graph Learning: Feature based Graph of Circuits (n= 30 nodes for
representation) and its corresponding heatmap.
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Experiments

Figure 23: Global and Local Homophily: Homophily Analysis across each performance metric.
Performed for graph with n= 1k nodes.

(MISN, IITD)



60/73

Experiments

Label Informed Graph Learning

Figure 24: Label informed Graph Learning: Features along with label information based Graph of
Circuits (n= 30 nodes for representation) and its corresponding heatmap.
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Experiments

Figure 25: Global and Local Homophily: Homophily Analysis across each performance metric.
Performed for graph with n= 1k nodes. Additional information across nodes improves homophily
score.
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Three-stage Ring Oscillator (R2 scores)
GCX(.) Frequency (MHz) Delay (µS) Power ( µW)

p=30% p=50% p=30% p=50% p=30% p=50%
(GCN) 0.30 0.44 0.28 0.55 0.35 0.63
(SAGE) 0.45 0.83 0.56 0.82 0.84 0.91
(GAT) 0.41 0.50 0.34 0.58 0.36 0.58

Table 8: R2 scores with different GNN architectures (Included value is the mean, averaged across
5 runs)
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Model Frequency Delay Power

GCX(SAGE)-I 0.83 0.82 0.91

GCX(SAGE)-II 0.75 0.90 0.92

ESSAB [2] 0.89 0.71 0.88

Table 9: R2 scores with different GNN architectures (Included value is the mean, averaged across
5 runs)
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Ring Oscillator - Three stage (Optimization)
Model Frequency (GHz) rms Jitter (pS) Delay (pS) Power (µW) FOM
DE [3] 1.26 0.99 131.7 256 -66.96

BO-EI[1] 1.22 7e-7 136.9 66.4 -73.48
EASCO 1.44 2.2e-7 115.4 335.2 -67.94

ASTROG 1.74 1.2 95.7 502.3 -67.27

Table 10: Comparison table for best case performance metrics with corresponding FOM
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Figure 26: Optimized Input Design Parameters with ASTROG algorithm.
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Experiments

Timing Analysis

Figure 27: Computational Time comparison corresponding to different optimization algorithms for
Three-stage Ring Oscillator
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Conclusion

▶ This work proposed Graph of Circuits Explorer (GCX), incorporating feature and label
based information.

▶ Integration of GCX with Graph based surrogate models (GSMs) in a semi-supervised
learning framework reduced reliance on labeled data.

▶ We additionally introduced EASCO and ASTROG which yielded most optimal
parameters.
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Knowledge Transfer Across Technology and Topology

Figure 28: Knowledge Transfer: To enhance the feature vector, we append it with one-hot
encoded technology files and circuit topology details, resulting in a new feature vector. The
technology files used, 180nm, 65nm, and 45nm, are represented using 3 bits. To represent the
original and higher-order topology, 2 bits are used, with an additional k bits assigned for circuit
element features. The first figure shows the ring oscillator implemented with the 65nm technology
file, while the second figure displays the 5-stage topology of the circuit.
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Figure 29: Thank you for your patience
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Questions?
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