
The s-value: evaluating stability with respect to
distributional shifts

Suyash Gupta,
Stanford University

December, 2023

Joint work with

Dominik Rothenhaeusler
1 / 49



Motivation

Replicability crisis due to-

failure to account for multiple testing, publication bias, problematic
incentives, distributional shifts
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Replicability crisis due to-

failure to account for multiple testing, publication bias, problematic
incentives, distributional shifts (this talk)
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Example

Figure: Anscombe’s quartet (F.J.Anscombe, 1973)

Y = β0 + Xβ1 OLS estimate (β1) p-values

Set 1 0.5 0.00217
Set 2 0.5 0.00217
Set 3 0.5 0.00217
Set 4 0.5 0.00217

Table: Identical estimates despite varying distributions
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Example

Figure: Anscombe’s quartet (F.J.Anscombe, 1973)

Figure. Covariate shift changes the OLS estimates differently (set 2 is the
most unstable)
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Example

Figure: Anscombe’s quartet (F.J.Anscombe, 1973)

Figure: More general shifts make sets 1 and 4 unstable.
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Take home messages?

Classical measures convey little about distributional stability of
estimators.

Considering overall distributional shifts maybe a bit conservative.

Often not all aspects of distribution shifts.

We should also consider less conservative shifts like shift in marginal
distribution of observed covariates.
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Sources of distributional instability

model misspecification

presence of confounding variables

selection bias that changes across settings

heterogeneity etc.
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Our contributions

We propose a measure of stability that
quantifies the distributional instability of a statistical estimand.

We develop measures for both overall and conditional shifts in
distributions.

We use the above measures to guide transfer learning procedure for
better estimation under shifted distribution
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Notation

Consider probability distributions with finite support (size K) (for ease)

P ← Probability distribution

w ← corresponding weights (K dimensional)

We will use them interchangeably (again for ease)!
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(Marginal) s-value

Consider training distribution P0, parameter θ such that θ(P0) > 0.

Figure: KL Divergence ball

(marginal) stability value, s(θ,P0)= exp(-smallest radius ) ∈ [0, 1].
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(Marginal) s-value of mean of a random variable

Distn. P0, weights w0, finite support Z1, . . . ,ZK , s-value for mean µ(w0):

s(µ,P0) = exp

{
−min

w

∑
wk log

(
wk

w0
k

)}
s.t. µ(w) =

∑
wkZk = 0

(Convex in probability weights w) easy!

Theorem (Donsker and Varadhan, 1976; Owen, 2001)

It turns out that

s(µ,P0) = inf
λ
EP0 [eλZ ]. (1)

Optimal weights are given by

w∗
k ∝ eλ

∗Zkw0
k

where λ∗ is the minimizer in (1).

∂µ
∂wk

= Zk

12 / 49



(Marginal) s-value of mean of a random variable

Distn. P0, weights w0, finite support Z1, . . . ,ZK , s-value for mean µ(w0):

s(µ,P0) = exp

{
−min

w

∑
wk log

(
wk

w0
k

)}
s.t. µ(w) =

∑
wkZk = 0

(Convex in probability weights w) easy!

Theorem (Donsker and Varadhan, 1976; Owen, 2001)

It turns out that

s(µ,P0) = inf
λ
EP0 [eλZ ]. (1)

Optimal weights are given by

w∗
k ∝ eλ

∗Zkw0
k

where λ∗ is the minimizer in (1).

∂µ
∂wk

= Zk
13 / 49



(Marginal) s-value of more general parameter?

For training distribution P0 (weights w0), parameter θ, s-value is

s(θ,P0) = exp

{
−min

w

∑
wk log

(
wk

w0
k

)}
s.t. θ(w) = 0.

(Maybe non-convex in w) easy? (may be not!)

Example: Linear regression coefficients (non-linear in weights).
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Related work (Empirical Likelihood (Owen, 2001))

Figure. Divergence ball. (Use asymptotic distribution of R̂ to construct
confidence set)

Considers asymptotically negligible shift in (marginal) distributions O( 1n ).

Hence, can approximate non-linear parameters linearly

θ(w) ≈ θ(wn) + ⟨∇θ(wn),w⟩.
We are interested in large shifts (both marginal and conditional)!
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(Conditional) s-value

Consider training distribution P0, parameter θ such that θ(P0) > 0 and
covariate E

Figure: KL Divergence ball

(conditional) stability value, sE (θ,P
0)= exp(-smallest radius ) ∈ [0, 1].
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(Conditional) s-value of mean of a random variable

For (Z ,E ) ∼ P0, s-value for the mean (µ(w0) = EP0 [Z ]) conditional on E

sE (µ,P
0) = exp

{
−min

w

∑
wk log

(
wk

w0
k

)}
s.t. µ(w) =

∑
wkZk = 0 ,

P(· | E ) = P0(· | E )

Theorem

It turns out that

s(µ,P0) = inf
λ
EP0 [eλEP0 [Z |E ]]. (2)

Optimal distribution is given by

w∗
k ∝ eλ

∗EP0 [Z |E=Ek ]w0
k

where λ∗ is the minimizer in (2).

R.V. Z = ∂µ
∂w EP0 [Z | E = Ek ] = EP0 [( ∂µ∂w ) | E = Ek ]
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Linear parameters

Parameters that are linear in weights/ can be written as mean of a random
variable-

θ(P) = EP [ϕ(Z )], s-value = inf
λ
EP0 [eλϕ(Z)]

AIPW estimator for average treatment effect (under covariate shift)
(Jeong and Namkoong, 2020)

Predictive coverage (Cauchois et al., 2020)

Predictive risk on a validation set (conditional shifts) (Subbaswamy
et al., 2021)

They all consider worst achievable value within a given amount of shift.
We can use binary search to find s-values.
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Non-linear parameters

s(θ,P0) = exp

{
−min

w

∑
wk log

(
wk

w0
k

)}
s.t. θ(w) = 0 (or c).

Problem is non-convex if θ is non-linear.

Can we at least obtain a local optima?

Theorem (Marginal case)

If w∗ is a locally optimal solution to the above problem then w∗ satisfies

w∗
k ∝ e

λ
∂θ(w∗)
∂wk

for some constant λ. Further, if w∗ is of above form and
sign(λ) · sign(θ(P0)) = −1, then w∗ is a local optima.
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Algorithm for non-linear setting

Minimize the lagrangian (δ > 0 if θ(w0) > 0)

δθ(w) +
∑

wk log

(
wk

w0
k

)
Use MM algorithm with a (carefully chosen) convex majorizer.

Assumption

θ is continuously differentiable and M smooth, that is, for weights w ,w0,

|θ(w)− θ(w0)− ⟨∇θ(w0),w − w0⟩| ≤ M

2

∥∥w − w0
∥∥2
2
.

Using equivalence of ℓ1 and ℓ2 norms and by Pinsker’s inequality, we have

|θ(w)− θ(w0)− ⟨∇θ(w),w − w0⟩| ≤ L
∑

wk log
wk

w0
k

.
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Proposition

Let w1 be the minimizer of the above majorizer, w1 is given by

w1
k ∝ e

− δ
1+Lδ

∂θ(w0)
∂wk (w0

k )
Lδ

1+Lδ .

Recall

s(θ,P0) = exp

{
−min

w

∑
wk log

(
wk

w0
k

)}
s.t. θ(w) = 0 (or c).

Proposition

If all stationary points of lagrangian are isolated, then the iterates of MM
algorithm converge to some w∗, and w∗ is a local optima to the above
problem, where the θ(w) is constrained to equal θ(w∗).

Obtain δ via binary search for which convergent solution satisfies
θ(w∗) = 0 (or c).
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Example

Figure: Anscombe’s quartet (F.J.Anscombe, 1973)

Y = β0 + Xβ1 OLS esti-
mate (β1)

p-values s sX

Set 1 0.5 0.00217 0.465 0
Set 2 0.5 0.00217 0.63 0.63
Set 3 0.5 0.00217 0 0
Set 4 0.5 0.00217 0 0

Table. OLS estimate, p-values, marginal and conditional s-values of the
regression coefficient for each set.
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Example

Figure: Anscombe’s quartet (F.J.Anscombe, 1973)

β

Conditional shift with respect to KL divergence

Figure:
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Wine quality data (Linear regression example)

Two subgroups– red wine and white wine.
Response- wine quality (1 to 10), covariates- some continuous
features of wine

Shift in marginal distribution of a given covariate with respect to KL divergence

β
p
H

Figure: Minimum and maximum achievable value within a given shift.
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Shift in marginal distribution of a given covariate with respect to KL divergence

β
d
en

si
ty

Figure: Minimum and maximum achievable value within a given shift.
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National supported work demonstration data (NSW)
(Lalonde, 1986)

Average treatment effect of an employment program on trainee earnings.

Shift in marginal distribution of a given covariate with respect to KL divergence

Figure: Minimum and maximum achievable value within a given shift.
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Parameter transfer

Training distribution,P0 Shifted distribution, Pshift

Enough data to
estimate θ(P0)

Better estimate θ(Pshift)?

Using (moments
of) covariates along
which θ is unstable
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Parameter transfer under covariate shift

1 (Intuitively) match moments of covariates along which parameter is
unstable (XS).

2 Regularize by still being as close to training distribution as possible.

Pproj = argmin
P′

DKL(P
′∥P0) such that EP′ [g(XS)] = EP0 [g(XS)].

3 Compute θ(Pproj).

Likelihood ratio based reweighting with full covariate information-
ATE-Dahabreh et al. (2019)
Predictive coverage-Barber et al. (2019)
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Parameter transfer

Proposition (Transfer of parameters)

Assume that t 7→ θ(tP0 + (1− t)P) is continuously differentiable with
derivative EP0 [ϕt(Z )]− EP [ϕt(Z )] for ϕt the influence function at
tP0 + (1− t)P. Let ϵt = infb ∥ϕt − b⊺g(XS)∥∞. Then, any distribution P ′

that satisfies EP′ [g(XS)] = EP [g(XS)],

|θ(P ′)− θ(P)| ≤ ∥ϵ∥∞ = 2 sup
t∈[0,1]

| ϵt | .
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Parameter transfer

Proposition (Transfer of parameters under conditional shifts)

Let XS be a variable such that P[•|XS ] = P0[•|XS ] and let K = g(XS).
Assume that t 7→ θ(tP0 + (1− t)P) is continuously differentiable with
derivative EP0 [ϕt(Z )]− EP [ϕt(Z )] for ϕt the influence function at
tP0 + (1− t)P. Let ϵt = infb ∥E[ϕt |S ]− b⊺g(XS)∥∞. Then,

|θ(Pproj)− θ(P)| ≤ 2∥ϵ∥∞. (3)
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Parameter transfer

Wine quality data

|β
p
H
(P

.)
−
β
p
H
(P

te
st
)|

alpha
(a)

|β
d
en

si
ty
(P

.)
−

β
d
en

si
ty
(P

te
st
)|

alpha
(b)

Figure. Wine quality data- transfer of regression coefficient of “pH” and
“density”. We add randomly chosen alpha proportion of samples from
white to red wine to construct the training set.
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Parameter transfer

NSW data

|τ
(P

.)
−
τ
(P

te
st
)|

alpha
(a)

Figure. Transfer of ATE τ from training to test distribution. We use splits
by (Dehejia and Wahba, 1999) and add randomly chosen alpha proportion
of samples from one split to the other to construct the training set.
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Model transfer

Training distribution,P0 Shifted distribution, Pshift

Train a predictive model Obtain better model for test distn.

Using only few su-
pervised samples

from new distribution
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Model transfer

Obtain a small test set with only few supervised samples
{(X s

i ,Y
s
i )}mi=1.

Let R(P) =
∑m

i=1 ℓ(f (θ(P),X
s
i ),Y

s
i ) denote risk on test set for

model f (θ, ·) obtained under distribution P.

Try to transfer R(P0) to R(Pshift).

Obtain

Pproj = arg min
P∈P

DKL(P∥P0,n) such that
1

m

m∑
i=1

ℓ(f (θ(P),X s
i ),Y

s
i ) ≤ γ,

(4)
choose γ ∈ R via cross-validation.
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Model transfer
M
S
E

Pproj Ptrain

(a)
M
S
E

Pproj Ptrain

(b)

Figure. Wine quality data. MSE on new test set when predictive model
is trained under a projected distribution vs training distribution. We mix α
proportion of samples from one group to the other in each case.
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E

X3

Y
X1

X2

Figure: Causal graphical structure
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Conclusion

Shift in data generating distribution is inevitable due to which
statistical knowledge may fail to generalize.

We developed measures to understand distributional instability and
further suggested steps to deal with it.

Based on the paper-

The s-value: evaluating stability with respect to distributional shifts. -
Suyash Gupta and Dominik Rothenhaeusler. 2021.
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