
EXACT RECOVERY AND BREGMAN HARD CLUSTERING OF NODE-ATTRIBUTED

STOCHASTIC BLOCK MODEL

Maximilien Dreveton Felipe S. Fernandes Daniel R. Figueiredo

EPFL, Switzerland, & Federal University of Rio de Janeiro, Brazil

NeurIPS – 2023



GRAPH CLUSTERING WITH NODE ATTRIBUTES

Setup

▶ Observed data: Interactions between node pairs (network) and node attributes (features).
▶ Hidden data: Nodes are divided into clusters.

Main focus

▶ Theoretical: how much information is brought by the network and by the attributes?
▶ Practical: derive an algorithm that learns both from the network and from the attributes.

• network: often sparse and possibly weighted;
• attributes: a vector with discrete or continuous entries (or a mix of both).
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NODE-ATTRIBUTED SBMS

▶ n nodes are divided into K latent blocks. We denote by z ∈ [K ]n the vector of the block (cluster)
memberships, and we suppose that:
• z1, · · · , zn are iid such that P(zi = a) = πa.

▶ Pairwise interactions (Xij)1≤i,j≤n and node attributes (Yi)1≤i≤n are independent conditionally on the
blocks:
• fab(Xij): probability of observing an interaction Xij between a node i in block a and a node j in

block b;
• ha(Yi): probability of observing an attribute Yi for a node i in a block a.

Conditional distribution of the data (X ,Y ) given block memberships z:

P (X ,Y | z) =
∏

1≤i<j≤n

fzi zj (Xij)
n∏

i=1

hzi (Yi).

How hard is it to recover z based on the observation of X and Y?
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EXACT RECOVERY OF BLOCK MEMBERSHIPS

Denote by Dt(f∥g) = 1
t−1 log

∫
f tg1−t the Rényi divergence of order t between two pdf f and g.

A key information-theoretic divergence is

I = min
a,b∈[K ]

a ̸=b

CH(a, b). (1.1)

where CH(a, b) = supt∈(0,1)(1 − t)

[
K∑

c=1

πc Dt (fbc∥fac)︸ ︷︷ ︸
information from the network

+
1
n
Dt (hb∥ha)︸ ︷︷ ︸

information from the attributes

]
.

Theorem 1

Suppose K = Θ(1) and πa > 0 for all a ∈ [K ]. Denote by a∗, b∗ the two hardest blocks to distinguish, that
is CH(a∗, b∗) = I. Suppose for all t ∈ (0, 1), lim

n→∞
n

log nCHt(a∗, b∗) exists and is strictly concave. Then the

following holds:

(i) exact recovery of z is information-theoretically impossible if lim
n→∞

n
log n I < 1;

(ii) exact recovery of z is information-theoretically possible if lim
n→∞

n
log n I > 1.
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NUMERICAL EXPERIMENTS
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(a) Binary weights with Gaussian attributes
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(b) zero-inflated Gaussian weights with Gaussian
attributes.

Figure. Phase transition of exact recovery. Each pixel represents the empirical probability that Algorithm 1
succeeds at exactly recovering the clusters (over 50 runs), and the red curve shows the theoretical threshold.
(a) n = 500, K = 2, fin = Ber(αn−1 log n), fout = Ber(n−1 log n). The attributes are 2d-spherical Gaussian with
radius (±r

√
log n, 0) and identity covariance matrix.

(b) n = 600, K = 3, fin = (1 − ρ)δ0 + ρNor(µ, 1), fout = (1 − ρ)δ0 + ρNor(0, 1) with ρ = 5n−1 log n. The attributes
are 2d-spherical Gaussian whose means are the vertices of a regular polygon on the circle of radius r

√
log n.
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CONCLUSION

In this presentation

Theoretical threshold for exact recovery of the community structure combines both the network and
attribute information.

In the paper & poster

Algorithm that clusters sparse networks with weighted interactions and with node-attributes.
▶ We suppose the attributes are sampled from an exponential family ;
▶ We suppose the network interactions are sampled from zero-inflated exponential families;
▶ We use the relationship between exponential families and Bregman divergences to derive an

iterative algorithm based on profile-likelihood maximisation.
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