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1. Generalized Additive Models
Model

-> Linear Regression:
f(x) =0+ wiz) + ... +wyzy,

=> Generalized Additive Models (GAM):

f(x) =B+ fi(z1) + ...+ falzn)
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2. Generalized Additive Models

Neural Additive Models (NAM):
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2. Generalized Additive Models

Neural Additive Models (NAM):

f(x)= 7" fi(z)
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Hypothesis: GAMSs allow to understand each
features’ contribution in isolation.



3. Multicollinearity and Concurvity
Model Problems

=> Linear Models: => Multicollinearity

f(x) =64+ wz + ... +wyzy,

= Generalized Additive Models (GAM): = Concurvity

f(x) =58+ filz1) + ...+ falzn)



3. Multicollinearity and Concurvity

Generalized Additive Model (GAM) f(X) = 6 + fl (SCl) T ... T fn(ZEn)

= Concurvity
Correlation between transformed features fi(x1), ..., fn(xn).

Example:

1 f(t) = Soup(t) + S74(2)




3. Multicollinearity and Concurvity
L L
Task: Fit periodic timeseries with 1
daily and weekly seasonality | L LU UTJW

J(t) = Soup(t) + S74(2)




3. Multicollinearity and Concurvity

Task: Fit periodic timeseries with H\_ﬂ (t) — S (t) -+ S (t)
daily and weekly seasonality TN f 24h 7d

Few Fourier terms
(NeuralProphet defaults)
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. Multicollinearity and Concurvity

Task: Fit periodic timeseries with wﬂm (t) — S (t) -+ S (t)
daily and weekly seasonality f 24h 7d

Few Fourier terms Many Fourier terms
(NeuralProphet defaults)
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3. Multicollinearity and Concurwty

Task: Fit periodic timeseries with H\_ﬂ S 2UP ( > -+ S 7d (t)
daily and weekly seasonality |

/ \

Many Fourier terms
w/ concurvity regularization
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4. Concurvity Regularizer

V
min &3 LV, 6+ X0 fi(X0) + A Ru({fiki, (X%

(f1,fp)EH

Definition: Concurvity Regular1zer -

R. ({f:}i:AXi}s) = 55-073 Z Z | Corr (fi(Xa), £5(X;

=1 j=141

Advantages of this approach:
Simple
General

Plug and Play : ‘ &
TensorFlow Gauf™,



5. Results
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Adult

oo pde® 2:100 - ® Individual seeds
€@ Sced average
o * 0.075 - * PyGAM
0.050 A
%% A 0.025 A <>Q>
¢ KK S & ®% ¢
4 6 8 0.6 0.8 1.0 0.30 0.35 0.40 0.45
Val. RMSE [1k §] Val. RMSE [100k $] Val. BCE
MIMIC2 MIMIC3 Support2
[
0.05 -
0.06
0.04 -+
0.05 1
4 i
% 0.03 0.04 4
o 0000 0.02 1 0.03
0.30 0.32 0.34 0.26 0.28 0.30 0.42 0.44 0.46 0.48
Val. BCE Val. BCE Val. BCE

Finding: Concurvity can be reduced significantly without impacting model fit.



Case Study: California Housing
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Case Study: California Housing
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Case Study: California Housing
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Finding:
- Uncorrelated features
remain unaffected.



Case Study: California Housing
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Finding:
- Correlated features often
get almost pruned.



Curve Your Enthusiasm: Concurvity Regularization in Differentiable Generalized Additive Models

Key take home messages:

- We proposed a regularizer to mitigate concurvity in differentiable generalized
additive models.

- We demonstrated its effectiveness at reducing concurvity while retaining
model fit quality.

- Why ‘Curve Your Enthusiasm’? Watch out for concurvity to avoid drawing
false conclusions from shape functions which hide concurvity.



