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MEMORY BOTTLENECK OF FINETUNING LLMS

• Forward phase and Backward phase of LLM Finetuning:

Forward Pass Z = MatMul(H,W ),

Backward Pass ∇H = MatMul(∇Z,W⊤),

∇W = MatMul(H⊤,∇Z),

where MatMul(·, ·) is the General Matrix Multiplication operation, H and Z are the activation
and output feature maps, respectively. W is the weight. ∇H , ∇W , and ∇Z are the gradient
of H , W , and Z, respectively. The activations H are stored H in GPU memory during the
forward pass, for calculating the weight gradient ∇W in the backward pass.

• Memory Bottleneck of LLM Finetuning: Although the model parameters contribute to the
memory footprint, activations (e.g., storing H) are the main memory bottleneck during
training. As shown in the right-side figure, for T5 models, activations may take roughly
73 ∼ 88% of the total memory, depending on the batch size B and sequential length S.
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Figure. The GPU memory usage for
fine-tuning T5. The batch size is 64
and sequential length is 128 or 256.

WINNER TAKES ALL COLUMN-ROW SAMPLING

• WTA-CRS Estimator. WTA-CRS estimator defined in Equation (5) splits the budget k into two parts. Namely, the first part explicitly
sums the expectation terms for the largest probability group C (|C| < k), while stochastically average k − |C| samples drawn from D\C to
estimate the remaining terms, up to scale:

(WTA-CRS) ĝ(X,Y ) =
∑
c∈C

f(c)p(c) +
1−

∑
c∈C pc

k − |C|

k−|C|∑
j=1

f(j), i1, · · · , ik−|C|
i.i.d∼ PD\C . (5)

• System Implementation. As shown in the following right-side figure, a transformer block consists of linear layers, TensorMul, and
other operations (e.g., GeLU, Dropout, LayerNorm). TensorMul refers to the multiplication between two four-dimensional tensors.
Our WTA-CRS can be applied to the backward pass of Linear-Q, -K, -V, -O, -U, -D, TensorMul-1, and TensorMul-2 (in green), while
leaving the forward pass unchanged, as shown in the following left-side figure. The activations of Dropout and GELU operations (in
blue) can be losslessly compressed. The Softmax and LayerNorm operators (in gray) remain unchanged.
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Figure. Left: The illustration of how to deploy WTA-CRS to linear layers. Right: Application of WTA-CRS to a Transformer block. B,S,Dmodel,
Nhead, and Dhead are the batch size, sequence length, hidden size, number of attention heads, and head dimension, respectively. WTA-CRS is
applied to the operators in green; the activation maps of operators in blue can be losslessly compressed; and those in gray are not compressed.

MEMORY COST AND ACCURACY ON THE GLUE DATASETS

Table. Peak memory usage (GB) and compression rate of fine-tuning T5-Base and -Large.

FP LoRA LST WTA-CRS@0.3 WTA-CRS@0.1 LoRA+WTA-CRS@0.3 LoRA+WTA-CRS@0.1
T5-Base 17.66 (1×) 13.84 (1.3×) 5.50 (3.2×) 8.44 (2.1×) 7.30 (2.4×) 6.50 (2.7×) 5.44 (3.2×)
T5-Large 45.85 (1×) 36.83 (1.2×) 14.85 (3.1×) 21.58 (2.1×) 18.46 (2.5×) 17.44 (2.6×) 14.64 (3.13×)

Table. The GLUE benchmark results with T5 and Bert at different scales.
Model Method CoLA SST-2 MRPC QQP MNLI QNLI RTE STS-B AVG

BERT-Large

Full 66.8±0.31 93.5±0.29 89.5±0.26 88.5±0.03 86.4±0.19 92.1±0.24 72.6±0.36 90.2±0.76 85.0
LoRA 65.9±0.27 93.8±0.17 90.8±0.37 87.6±0.08 85.9±0.05 92.0±0.2 71.3±0.18 90.3±0.09 84.7
WTA-CRS@0.3 64.7±0.44 93.5±0.0 89.3±0.39 88.2±0.04 85.2±0.03 91.9±0.12 73.8±0.54 90.4±0.02 84.6
LoRA+WTA-CRS@0.3 66.0±0.33 93.3±0.29 89.7±1.32 87.6±0.02 86.0±0.07 91.9±0.14 72.4±0.17 89.7±0.04 84.6

T5-Large

Full 61.3±1.01 96.3±0.0 93.4±0.13 89.7±0.01 89.8±0.07 94.2±0.05 85.3±0.17 91.8±0.08 87.7
LoRA 63.3±0.26 96.4±0.14 93.5±0.16 88.5±0.03 89.5±0.05 94.3±0.07 84.2±0.68 91.7±0.13 87.7
LST 59.9±0.77 95.8±0.06 91.8±0.08 88.4±0.01 88.7±0.05 94.2±0.02 82.5±0.18 91.4±0.07 86.6
WTA-CRS@0.3 60.9±1.18 96.3±0.25 93.6±0.57 89.3±0.04 89.5±0.12 94.1±0.03 84.4±0.34 91.3±0.05 87.4
LoRA+WTA-CRS@0.3 62.9±1.19 96.2±0.05 93.6±0.47 88.3±0.02 89.2±0.08 94.0±0.07 83.9±0.95 91.3±0.03 87.4

T5-3B LoRA 70.1±0.37 96.8±0.29 94.0±0.27 89.9±0.0 91.0±0.14 95.6±0.05 85.9±0.36 92.9±0.08 89.5
LoRA+WTA-CRS@0.3 71.4±0.35 96.4±0.06 94.6±0.39 90.0±0.05 91.0±0.06 95.6±0.12 86.3±0.36 92.9±0.09 89.8

• Under similar memory budget, WTA-CRS achieves higher accuracy than other methods, improving down-streaming task performance.

• WTA-CRS achieves a superior trade-off between accuracy and memory usage compared to baselines. Specifically, WTA-CRS has negligi-
ble accuracy drop, while the peak memory usage is reduced by 2.1× ∼ 2.7× (when combined with LoRA).

EXPERIMENTAL RESULTS
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• WTA-CRS achieves better accuracy-memory trade-off than state-of-the-art memory-efficient tuning methods, e.g., LST and LoRA.

• WTA-CRS enables faster training speed under the same hardware. On the T5-Large model, WTA-CRS@0.1 shows 1.08× higher training
throughput; on the T5-3B model, WTA-CRS@0.3 and WTA-CRS@0.1 achieve 1.14× and 1.21× higher training throughput, respectively.
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