WINNER-TAKE-ALL COLUMN ROW SAMPLING FOR MEMORY EFFICIENT ADAPTATION OF LANGUAGE MODEL
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MEMORY COST AND ACCURACY ON THE GLUE DATASETS

Table. Peak memory usage (GB) and compression rate of fine-tuning T5-Base and -Large.

MEMORY BOTTLENECK OF FINETUNING LLMS

 Forward phase and Backward phase of LLM Finetuning:

Memory Usage Breakdown

= FP LoRA LST WTA-CRS@0.3 WTA-CRS@0.1 LoRA+WTA-CRS@0.3 LoRA+WTA-CRS@0.1
Forward Pass  Z =MatMul(H, W), == Opiniz T5-Base  17.66 (1x) 13.84(1.3x) 550 (3.2x) 844 (2.1x) 7.30 (2.4x) 6.50 (2.7x) 5.44 (3.2%)
Backward Pass VH =MatMul(VZ, W), ] = ot T5-Large 45.85(1x) 36.83 (1.2x) 14.85(3.1x)  21.58 (2.1x) 18.46 (2.5%) 17.44 (2.6 %) 14.64 (3.13%)
VW =MatMul(H ' ,VZ), 90530_ Table. The GLUE benchmark results with T5 and Bert at different scales.
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and output feature maps, respectively. W is the weight. VH, VW, and V2 are the gradient . LoRA 659027 93.8+017 90.8+03 87.6+00s 8594005 92.0+02 713+01s 903-0e 847
o M, W, and Z, respectively. The activations 1 are stored 1f in WP memory during the | a0 S e BERT-Large  yyra-crS@0.3 64.7+t044 935+00 8934039 8824004 8524005 9194012 738+0ss 90.4+0c 846
pass 5 S8 e S S LoRA+WTA-CRS@0.3 66.0+033 93.34020 8974132 87.6+002 86.0+007 9194014 7244017 8974004 846
e Memory Bottleneck of LLM Finetuning: Although the model parameters contribute to the Fieure. The GPU memor for Full 61.3£101 96.3+00 93.44013 89.7+001 89.84007 94.2+005 85.3%+017 91.8+008 87.7
memory footprint, activations (e.g., storing H) are the main memory bottleneck during i flf te.nin © 5. Th eb (,z }}i uisagie g A LoRA 63.3+026 96.4+014 93.5F+016 88.5+003 89.5+005 94.3+007 84.2+06s 91.7+013 87.7
training. As shown in the right-side figure, for T5 models, activations may take roughly cel . gt' 1'1 ethé ¢ 1 22 2€ 285 6 T5-Large LST 599+077 95.8+006 91.8+0.08 88.4+4001 88.74005 94.24002 82.5+018 91.4+007 86.6
73 ~ 88% of the total memory, depending on the batch size B and sequential length S. and sequentiat iIengt 15 OF £90. WTA-CR5@0.3 60.9+118 96.3f025 93.6+057 89.3+004 89.54012 94.14003 84.4+034 91.3+005 874
LoRA+WTA-CR5@0.3 629+119 96.2+005 93.6+047 88.3+002 89.2+008 94.0+007 83.9+095 91.3+003 87.4
T5-3B LoRA 70.1+037 96.8+029 94.0+027 89.94+00 91.0+014 95.6+005 85.94036 92.94008 89.5
WINNER TAKES ALL COLUMN-ROW SAMPLING LoRA+WTA-CR5@0.3 71.44035 96.44006 94.61039 90.0d4005 91.0d¢006 95.6F012 86.31+036 9294009 89.8

e Under similar memory budget, WTA-CRS achieves higher accuracy than other methods, improving down-streaming task performance.

e WTA-CRS Estimator. WTA-CRS estimator defined in Equation (5) splits the budget k into two parts. Namely, the first part explicitly
sums the expectation terms for the largest probability group C (|C| < k), while stochastically average k — |C| samples drawn from D\C to

. e e WTA-CRS achieves a superior trade-off between accuracy and memory usage compared to baselines. Specifically, WTA-CRS has negligi-
estimate the remaining terms, up to scale:

ble accuracy drop, while the peak memory usage is reduced by 2.1x ~ 2.7x (when combined with LoRA).
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* System Implementation. As shown in the following right-side figure, a transformer block consists of linear layers, TensorMul, and = 90- v A = 55] =16
other operations (e.g., GeLU, Dropout, LayerNorm). TensorMul refers to the multiplication between two four-dimensional tensors. g N * N & &
Our WTA-CRS can be applied to the backward pass of Linear-Q, -K, -V, -O, -U, -D, TensorMul-1, and TensorMul-2 (in green), while < s % R S = =
. . . . o . . . . ] u -Large — —
leaving the forward pass unchanged, as shown in the following left-side figure. The activations of Dropout and GELU operations (in = X  LoRA (TS_Lirge) = = 14
. . N .
blue) can be losslessly compressed. The Softmax and LayerNorm operators (in gray) remain unchanged. = X LST (T5-Large) Z 50 Z
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<]?Eq“aﬁ°“ S ? 9 Tenso?ﬁgl{/zx;xﬂ T e WTA-CRS achieves better accuracy-memory trade-off than state-of-the-art memory-etficient tuning methods, e.g., LST and LoRA.
Subsample > Dropout | GELU
w i GPU = — [BXN*‘“[""SXE};‘L:]V | fB i e WTA-CRS enables faster training speed under the same hardware. On the T5-Large model, WTA-CRS@0.1 shows 1.08x higher training
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Figure. Left: The illustration of how to deploy WTA-CRS to linear layers. Right: Application of WTA-CRS to a Transtormer block. B, .S, Dodel,

Nhead, and Dyeqq are the batch size, sequence length, hidden size, number of attention heads, and head dimension, respectively. WTA-CRS is
applied to the operators in green; the activation maps of operators in blue can be losslessly compressed; and those in gray are not compressed.
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