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RL with Function Approximation

* Empirical success of RL requires function approximation to handle high-dimensional spaces
* Collecting real-world data can be expensive
* Sample-efficient algorithms for the agent to learn using limited amount of samples
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Limited Feedback Availability

* Common assumptions
* Real-time communication

* Feedback is observed immediately upon taking an action
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Limited Feedback Availability

* Reality
* Delayed Feedback

* Robot teleoperation: delay due to signal transmission

* Clinical trails: effectiveness of treatments can only be determined at a deferred time frame

Clinical trials Robot teleoperation
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Practical Requirement

* Computationally efficient algorithms

* Statistically efficient algorithms

* Easy to deploy

* Resilient to delays

* Effective learning with least communication
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Posterior Sampling (PS)

A randomized Bayesian algorithm

Extends Thompson sampling (TS) to RL

Selects an action according to its posterior probability of being the best

* Bears greater robustness in the presence of delays
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Overview

* TLDR
* Provide the first analysis for the class of PS algorithms to handle delayed feedback in RL

* Contributions
* Introduce two novel value-based algorithms for linear MDPs under unknown stochastic delayed feedback
* Delayed Posterior Sampling Value Iteration (Delayed-PSVI)
* Delayed Langevin Posterior Sampling Value Iteration (Delayed-LPSVI)
- Both algorithms achieve a high-probability worst-case regret of O (Vd3H3T + d2H?E[1])
» Delayed-LPSVI reduces the computational complexity of Delayed-PSVI from O(d3HK) to O(dHK)
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Comparison

* Contributions
* Regret bounds in linear bandits and episodic MDPs under stochastic delay
* Qur algorithms
* Achieve the optimal dependence on the parameters d and T under the class of PS algorithms

* Recover the best-available frequentist regret as in non-delayed settings

Algorithms Setting Exploration Worst-case Regret Computation
(28] Linear Bandits UCB (3[1:!@ + d3/2E[1]) Confidence set optimization
[29] Tabular MDPs UCB O(VSAH?T + S? AHE[7]) Active update
[68] Linear MDPs UCB 5{ V& H3T + dHE[7]) Multi-batch reduction
[40] Adversarial MDPs UCB 5{H25m + H3/? \/ SS 4, 7) | Confidence set optimization
Delayed-PSVI (Thm 1) Linear MDPs PS 5(@ + d*H?E[7]) O((d* + Md)HK)
Delayed-LPSVI (Thm 2) Linear MDPs PS O(V&H?T + d*HE[r]) O((N +d)MHK)
Delayed-PSLB (Cor 2) Linear Bandits PS 5(x/dTT + d*E[7]) O((N+dMK)
UCB Lower bound [27] Linear MDPs UCB Q(dHT) —
PS Lower bound [24] Linear Bandits PS Q(\/d3*T) —

NeurlPS 2023 9



RL with Linear Function Approximation

* Finite-horizon episodic setting, time-inhomogeneous
* Both the transition dynamics P and reward function are linear in the feature map
* Action-value functions are always linear in the feature map
Definition 1 (Linear MDPs [66, 35]). Suppose there exists a known feature map ¢ : S x A — R?
that encodes each state-action pair into a d-dimensional feature vector. An MDP is a linear MDP>

if for any time step h € [H|, V(s,a) € 8 x A, both the transition dynamics P and reward function
r are linear in ¢:

Ph(-|s,a) = ¢(s,a) pun(:),  7a(s,a) = &(s,a)" On, (1)

where py, @ S — R? contains d unknown probability measures over S, and 0, € R®. Furthermore,
we assume that V(s,a) € S x A, ||¢(s,a)|| < 1, and Vh € [H], ||04]| < Vd, || [¢ dpn(s))| < V.,

where ||-|| denotes the Euclidean norm.
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Performance Metric: worst-case Regret

* The goal of the learner: maximize the cumulative rewards / minimize the worst-case regret

* Worst-case regret:
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Episodic Delayed Feedback Model

* Consider stochastic delays across episodes
* Trajectory of each episode is not immediately observable

Definition 2 (Episodic Delayed Feedback). In each episode k € [K]|, the execution of a fixed

policy 7" generates a trajectory {si, ai, rﬁ, 5E+1}hE}H]* Such trajectory information is called the

feedback of episode k. Let T, represent the random delay between the rollout completion of episode
k and the time point at which its feedback becomes observable.

* Feedback of episode k becomes observable at the onset of the (k + 71} )-th episode

* Assumption: sub-exponential delays

k=2 k=5
Tk=3 Tk:8

| |

%
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Noisy Value lteration

* Noisy value iteration via posterior sampling
* Consider a probability model p(x | 8) with a d-dimensional latent variable 6.
* The goal is to estimate the latent variable 6 by inferring its posterior:

_ AB) -px]|6)
p(@ | x) I p(x)

Posterior

oc A(8) |p(x|6)

* Posterior is often computationally intractable: p(x) = [A1(8)p(x | 6)do
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Delayed Posterior Sampling Value Iteration

* Not to maintain an exact posterior, but to inject randomness for efficient exploration

* Parameterize Q-function with parameter w € R¢:

—~

Q(s,a) = ¢(s,a)tw
p(w|D,y) x exp(—L(w,y, D))po(w)
* Posteriors:
p(wh[Dn,y) o N () @nyt, (24) )

Q;‘i — (I)h(b%: + /\Id and (I)h = [ﬁf)(S}l; (L_}l); QS(S}?U a‘}%): s ?é(si_liaﬁ_l)]

* Approximates the solution of Bellman optimality equation via the least-square ridge regression

wF = argmin,, Eff;} (¢(sh,ar)Tw— (r+maxQF))? + A\,
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Delayed Posterior Sampling Value Iteration

Algorithm 1: Delayed Posterior Sampling Value Iteration (Delayed-PSVI)

Input: priors po(wy) « N(0, AT), scaling factor v, multi-round paramter M, hyper parameters A
and 0.
1 Initialization: Illﬁ|rli:"-": h, Q;fcf-l-l(': '}a VH+1('& '}: Vh('f } +—0,Dp + 0.
2 for episode k=1,..., K do

3 Sample initial state st

4 for time step h = H,... 1do N

5 Yh — [y;‘!, . ,y:_l], withyy + L k-1 [rh + Vas1(5541)]
6 @y, (¢, ¢%,.... 0" witho™ =1, 41 - é(sh,ap)

7 OF — 0 20,0y, + M, Wy o 2(QF) 'Dpyn’

8 p(w | P, yr) — Nk, v* - (55)™H)

9 form=1,..., Mdo

10 Sample @™ ~ p(wf | Dr, yr)

1 QE™(-,) « o, ) Tk ™

12 Update Q% (-, ) + max,, @tm

13 1‘}&(','}{—maxumin{@ﬁ(r,a},H—h—l— 1}

14 Update 75 (-) 4 argmax, . 4 min{@ﬁ[-,a},H —h+1}

15 for time step h =1...., H do

16 Choose action af = 7 (sﬁ)

17 Collect trajectory observations Dy, + Dy, U {{Sﬁ, ak rf gk 1)}

/* Feedback generated in episode k cannot be immediately observed in the presence of delay  *#/

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation." NeurlPS 2023
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Performance Guarantee

* Worst-case regret guarantee
* Recover the best-available frequentist regret O (vVd3H3T) as in non-delayed linear MDPs
- Computational complexity: 0((d® + M d)HK)

Theorem 1. Suppose delays satisfy Assumption 1. In any episodic linear MDP with time horizon
T = KH, where K is the total number of episodes, for any 0 < & < 1, let A = 1, ¢° = 1,

M =log(4HK/d)/log(64/63) and v = Cjs/4 = O(VdMH?) (Cs4 in Lemma B.10). Then with
probability at least 1 — 9§, there exists some absolute constants ¢, ¢',¢" > 0 such that the regret of
Delayed-PSVI (Algorithm 1) satisfies:

R(T) < eVd*H3*T1 + ¢ d*H?E[r]. + ..
Here 1 is a Polylog term of H, d, K, 0.

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation.” NeurlPS 2023
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Estimation of Complex Probabilistic Model

* Posteriors are often computationally intractable
* Delayed-PSVI is not sufficiently efficient in high-dimensional settings

* Resort to approximate Bayesian inference methods

RN
QQ‘Q“Q@@®¢Q{ :
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Approximate Bayesian Inference

* Bootstrapping

* Ensemble Methods

* Variational Inference (VI)

* Markov Chain Monte Carlo (MCMC)
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Langevin Monte Carlo

* A class of gradient-based MCMC methods, tailored for large-scale online learning

True Density Empirical Density
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Langevin Monte Carlo

Efficient in large-scale online learning

Perform gradient optimization over data D

Euler discretization of the Langevin stochastic differential equation (SDE):

dw(t) = —VL(w(t))dt + /261 dB(1)

Update rule: noisy gradient update

0 « 0,1 —mVU(OB,_1) + /2nV¢&;, where g:~N(0,1,)
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Delayed Langevin PSVI

* Noisy value iteration via Langevin posterior sampling

Algorithm 2: Delayed Langevin Posterior Sampling Value Iteration (Delayed-LPSVTI)

Input: wq, N, Ni, v and rounds M, A. Delayed loss Lﬁ as (5).
1 Initialization: Yk € [K],h € [H], Q% 1(-,) < 0,V () < 0, VP(+,-) 0
2 for episode k. =1,..., K do

Sample initial state st
for time step h = H,.... 1do
form=1, ..., Mdo

3
4
5
6 wr™ « LMC(LE, wo, nx, Ni.,¥) ILMC is given by Algorithm 3
7 (Jl.:i.rn(lr :l — If,j{'}T'E.Ei.”l

8 Update Qf (-, ) + max,, Q; ™

9 V(") « max, min{@ﬁ(—,a},H— h+ 1}

10 Update policy 75 (+) < argmax, . min{Q} (-,a), H — h 4+ 1} Algorithm 3: Langevin Monte Carlo
11 for time step h = 1,..., H do LMC(L, wo,n, N,7)
12 Choose action af = 75 (s}) tfort =1...N —1do
: . E Ok k k 2 | Draw e ~ N(0, Iy)
13 Collect trajectory observations Dy, +— Dy, U {(s}, a5, 75, 85.1)} 3| we e wey — VL(we—1) + V276

/* Feedback generated in episode & cannot be immediately observed in the presence of delay  */ 4 Output: wy
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Worst-case Regret Guarantee

* Worst-case regret guarantee

* Recover the best-available frequentist regret O (vVd3H3T) as in non-delayed linear MDPs
« Computational complexity: O((N + d)HK)

Theorem 2. Suppose delays satisfy Assumption 1. In any episodic linear MDP with time hori-
zon ' = KH, where K is the total number of episodes and H is the fixed episode length,

forany 0 < § < 1, let A = 1, N, = max{lﬂg(BEHﬁiﬁJ'l}dk +1)/[21og(1/(1 = 5-))],
log 2 4Hf{‘1 B 1 B 2 o ACANS ET2
Elng{l;’{l—ﬁ]} F)f log(1/(1 — ﬁ N me = Domae (F)’ Y = lﬁCﬂf4 ~ O(dMH*=),

wp = 0and M = log(4HK /§)/log(64/63). Then with probability at least 1 — 6, there exists some
absolute constants ¢, ¢, ¢" > 0 such that the regret of Algorithm 2 satisfies:

R(T) < eVd3H3T1 + ¢ d*H?E[7]e + 1.
Here 1 is a Polylog term of H, d, K, 6 and Cj is defined in Lemma C.9.

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation.” NeurlPS 2023
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Experiments

* Sub-exponential delays and long-tail delays:
* Multinomial delay
* Poisson delay

* Long-tail Pareto delay
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Figure 2: Empirical distributions of three types of delays. (a) Multinomial delays with delay categories
{10, 20, 30}. (b) Poisson delays with rate E[7] = 50. (c) Long-tail Pareto delays with shape 1.0, scale 500. The
first two types of delays are well-behaved and decay exponentially fast, while pareto delays are heavy-tailed.

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation.” NeurlPS 2023
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Experiments

* Performance Comparison
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Figure 1: Left:(a) Multinomial delay with delay categories {10, 20, 30}. (b) Poisson delay with rate E[7] = 50.
(c) Long-tail Pareto delay with shape 1.0, scale 500. Results are reported over 10 experiments. Delayed-PSVI
and Delayed-LPSVI demonstrate robust performance under both well-behaved and long-tail delays.

Multinomial Delay Poisson Delay Pareto Delay (Shape
(10, 20, 30) (E[7] = 50) 1.0, Scale 500)
Delayed-PSVI (o = 0.1) 11.53 +£0.76 11.48 £ 0.81 11.53 £0.74
Delayed-LPSVI (¢, = 0.5) 11.56 £ 0.48 11.37 £ 0.48 10.98 £ 0.40
Delayed-UCBVI (cs = 0.1) 10.61 £+ 0.76 10.54 £ 0.81 7.20 £0.38

Table 2: Average return achieved by Delayed-PSVI, Delayed-LPSVI and Delayed-UCBVI upon convergence
under different delays. Environment setup: |S| = 2, | A| = 20, d = 10, H = 20. Optimal average return is
V1" (s1) = 11.96. Results are obtained over 10 experiments.
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Experiments

* Computational overhead

* Measured by number of episodes to converge

|5]|A] = 20 |5][A| = 40 |&][.A| = 100 |&]|A| = 200
DelayedPSVI (o = 0.3) 1418 1290 1660 2633
Delayed-PSVI (o = (0.2) 231 1114 1323 826
Delayed-PSVI (o = (0.1) 391 a7l 350 709
Delayed-LPSVI (e, = 0.5) 293 246 al7 H66
Delayed-UCBVI (¢ = (.1) 3205 2713 3351 3694

Table 3: Number of episodes for each method to achieve its highest expected return. Different synthetic envi-
ronments are examined with varied | S| and |.4|. Optimal average return is V5" (s1) = 11.96 for all environments
(d = 10, H = 20). Results are obtained over 10 experiments with Poisson delays (E[r| = 50).

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation.” NeurlPS 2023
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Conclusions

 Study posterior sampling with episodic delayed feedback in linear MDPs

* Introduce two novel value-based algorithms: Delayed-PSVI and Delayed-LPSVI

- Both algorithms achieve a high-probability worst-case regret of O(Vd3H3T + d*H*E[1])

* By incorporating LMC for approximate sampling, Delayed-LPSVI reduces the computational cost by

0(d?) while maintaining the same order of regret

* Empirical evaluation demonstrates the effectiveness of our algorithms over UCB-based methods
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