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Sequential Decision Making
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Web search 

Online recommendation

Robotics

Autonomous Vehicles

LLMs with RLHF
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RL with Function Approximation
• Empirical success of RL requires function approximation to handle high-dimensional spaces

• Collecting real-world data can be expensive

• Sample-efficient algorithms for the agent to learn using limited amount of samples
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Limited Feedback Availability

• Common assumptions

• Real-time communication

• Feedback is observed immediately upon taking an action

• Unrealistic!
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Limited Feedback Availability
• Reality

• Delayed Feedback

• Robot teleoperation: delay due to signal transmission

• Clinical trails: effectiveness of treatments can only be determined at a deferred time frame
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Clinical trials Robot teleoperation
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Practical Requirement

• Computationally efficient algorithms

• Statistically efficient algorithms

• Easy to deploy

• Resilient to delays

• Effective learning with least communication
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Computation efficiency problem: 
Can we design computationally efficient and practical algorithms? 

Sample efficiency problem: 
How to obtain statistically accurate algorithms with the least number of samples? 
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Posterior Sampling (PS)

7

• A randomized Bayesian algorithm 

• Extends Thompson sampling (TS) to RL

• Selects an action according to its posterior probability of being the best

• Bears greater robustness in the presence of delays



NeurIPS 2023

Overview
• TLDR

• Provide the first analysis for the class of PS algorithms to handle delayed feedback in RL

• Contributions
• Introduce two novel value-based algorithms for linear MDPs under unknown stochastic delayed feedback

• Delayed Posterior Sampling Value Iteration (Delayed-PSVI)

• Delayed Langevin Posterior Sampling Value Iteration (Delayed-LPSVI)

• Both algorithms achieve a high-probability worst-case regret of 𝑂( 𝑑3𝐻3𝑇 + 𝑑2𝐻2𝔼 𝜏 )

• Delayed-LPSVI reduces the computational complexity of Delayed-PSVI from ෨𝑂 𝑑3𝐻𝐾  to ෨𝑂 𝑑𝐻𝐾  
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Comparison
• Contributions
• Regret bounds in linear bandits and episodic MDPs under stochastic delay

• Our algorithms 

• Achieve the optimal dependence on the parameters 𝑑 and 𝑇 under the class of PS algorithms 

• Recover the best-available frequentist regret as in non-delayed settings
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RL with Linear Function Approximation
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• Finite-horizon episodic setting, time-inhomogeneous

• Both the transition dynamics 𝑃 and reward function are linear in the feature map

• Action-value functions are always linear in the feature map
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Performance Metric: worst-case Regret

• The goal of the learner: maximize the cumulative rewards / minimize the worst-case regret

• Worst-case regret: 
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Episodic Delayed Feedback Model
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• Consider stochastic delays across episodes

• Trajectory of each episode is not immediately observable

• Feedback of episode 𝑘 becomes observable at the onset of the (𝑘 +  𝜏𝑘)-th episode

• Assumption: sub-exponential delays

𝑘 = 2
𝜏𝑘 = 3

𝑘 = 5
𝜏𝑘 = 8
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Noisy Value Iteration

• Noisy value iteration via posterior sampling

• Consider a probability model 𝑝(𝑥 | 𝜃) with a 𝑑-dimensional latent variable 𝜃.

• The goal is to estimate the latent variable 𝜃 by inferring its posterior:

 𝑝(𝜃 | 𝑥)  =
𝜆(𝜃) · 𝑝(𝑥 | 𝜃)

𝑝 𝑥

 ∝ 𝜆 𝜃  𝑝(𝑥 | 𝜃)
 

• Posterior is often computationally intractable: 𝑝(𝑥) = ׬ 𝜆(𝜃)𝑝(𝑥 | 𝜃)𝑑𝜃
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Posterior

Prior Likelihood
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Delayed Posterior Sampling Value Iteration
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• Not to maintain an exact posterior, but to inject randomness for efficient exploration

• Parameterize Q-function with parameter 𝑤 ∈  ℝ𝑑:

• Posteriors:

• Approximates the solution of Bellman optimality equation via the least-square ridge regression
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Delayed Posterior Sampling Value Iteration
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Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation." NeurIPS 2023

Optimism: multi-round sampling

Noisy value iteration
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Performance Guarantee
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• Worst-case regret guarantee

• Recover the best-available frequentist regret 𝑂( 𝑑3𝐻3𝑇) as in non-delayed linear MDPs

• Computational complexity: 𝑂((𝑑3 + 𝑀 𝑑)𝐻𝐾) 

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation." NeurIPS 2023



NeurIPS 2023

Estimation of Complex Probabilistic Model

• Posteriors are often computationally intractable

• Delayed-PSVI is not sufficiently efficient in high-dimensional settings

• Resort to approximate Bayesian inference methods

20

How to sample from unknown non-conjugate distributions?
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Approximate Bayesian Inference

• Bootstrapping

• Ensemble Methods

• Variational Inference (VI)

• Markov Chain Monte Carlo (MCMC)

21



NeurIPS 2023

Langevin Monte Carlo

• A class of gradient-based MCMC methods, tailored for large-scale online learning
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Langevin Monte Carlo

• Efficient in large-scale online learning

• Perform gradient optimization over data D

• Euler discretization of the Langevin stochastic differential equation (SDE):

• Update rule: noisy gradient update

𝜃𝑡 ←  𝜃𝑡−1 − 𝜂∇𝑈 𝜃𝑡−1 + 2𝜂𝛾𝜀𝑡 ,  𝑤ℎ𝑒𝑟𝑒 𝜀𝑡~𝒩(0, 𝐼𝑑)
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Delayed Langevin PSVI
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• Noisy value iteration via Langevin posterior sampling

Optimism: multi-round sampling
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Worst-case Regret Guarantee
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• Worst-case regret guarantee

• Recover the best-available frequentist regret 𝑂( 𝑑3𝐻3𝑇) as in non-delayed linear MDPs

• Computational complexity: 𝑂((𝑁 + 𝑑)𝐻𝐾) 

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation." NeurIPS 2023
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Experiments
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• Sub-exponential delays and long-tail delays:

• Multinomial delay

• Poisson delay

• Long-tail Pareto delay

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation." NeurIPS 2023
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Experiments
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• Performance Comparison
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Experiments
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• Computational overhead

• Measured by number of episodes to converge

Kuang, Yin, Wang, Wang, and Ma, "Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation." NeurIPS 2023
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Conclusions

• Study posterior sampling with episodic delayed feedback in linear MDPs

• Introduce two novel value-based algorithms: Delayed-PSVI and Delayed-LPSVI

• Both algorithms achieve a high-probability worst-case regret of 𝑂( 𝑑3𝐻3𝑇 + 𝑑2𝐻2𝔼 𝜏 )

• By incorporating LMC for approximate sampling, Delayed-LPSVI reduces the computational cost by 

෨𝑂(𝑑2) while maintaining the same order of regret

• Empirical evaluation demonstrates the effectiveness of our algorithms over UCB-based methods

29



NeurIPS 2023 31

Thank you!
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