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Bifurcation manifolds in PLRNN parameter space

Bifurcation = qualitative 
(topological) change in a 
system's state space as one or 
more parameters change



Bifurcation manifolds in PLRNN parameter space



𝑧𝑘
∗ = 𝟙 − ς𝑟=0

𝑘−1𝑊Ω 𝑘−𝑟
−1

σ𝑗=2
𝑘−1ς𝑟=0

𝑘−𝑗
𝑊Ω 𝑘−𝑟 + 𝟙 + ℎ

Searcher for Cycles and Fixed points: SCYFI

• Mathematically tractable: Allows for 
semi-analytic calculation of fixed 
points and cycles

• BUT: Combinatorial problem!

Solve for cycle candidate 

𝑧𝑘,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒
∗ = 𝟙 − ς𝑟=0

𝑘−1𝑊Ω 𝑘−𝑟
−1

σ𝑗=2
𝑘−1ς𝑟=0

𝑘−𝑗
𝑊Ω 𝑘−𝑟 + 𝟙 + ℎ

 Number of linear regions: 2𝑀𝑘

If 𝑊Ω𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = 𝑊Ω𝑖𝑛𝑖𝑡

Real FP/k-cycle found virtual FP/k-cycle

Else

𝑊Ω𝑖𝑛𝑖𝑡 → 𝑊Ω𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

Select initial set of linear subregions 𝑊Ω𝑖𝑛𝑖𝑡

Done

Determine if stable,
unstable or saddle
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Determine linear subregions corresponding to cycle candidate
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SCYFI: Scaling

Theorem 3.  Under the condition 𝐴 + 𝑊 < 1, SCYFI will 
converge in at most linear time

latent space dimensionality
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Theorems: Bifurcations and exploding/ 
vanishing gradients

Theorem 1.  If a stable fixed point or a k-cycle undergoes a 
degenerate transcritical bifurcation, the norm of the PLRNN 

loss gradient tends to infinity lim
𝑡→∞

𝑑𝐿

𝑑𝜃
= ∞

Theorem 2.  If a stable fixed point or a k-cycle undergoes a 
border collision bifurcation, the norm of the PLRNN loss 

gradients vanishes lim
𝑡→∞

𝑑𝐿

𝑑𝜃
= 0



Toy example

 Bifurcations can cause jumps in the loss



Empirical example: Training PLRNN on 
membrane voltage traces of real cell
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Generalized Teacher Forcing (GTF)1 prevents 
bifurcations in training

[1] F. Hess, Z. Monfared, M. Brenner, and D. Durstewitz. Generalized teacher forcing for learning chaotic dynamics. In Proceedings of the 40th 

International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research Jul 2023

Theorem 3.  
If 𝐴 + 𝑊 < 1 then for any 0 < α < 1 GTF controls the system, preventing degenerate 
transcritical bifurcations.

If 𝐴 + 𝑊 = 𝑟 > 1 then for any 1 −
1

𝑟
< α < 1 GTF prevents degenerate transcritical

bifurcations.



Conclusion

Implications for RNN training
Generalized teacher forcing 
provably avoids bifurcations 
in training

SCYFI
• Computes fixed points and k-cycles 

exactly
• Efficient: surprisingly good, often linear, 

scaling

Theorems
Formal connection between 
bifurcations and exploding 
or vanishing gradients
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