Trajectory Alignment: Understanding the Edge of
Stability Phenomenon via Bifurcation Theory

Minhak Song  Chulhee Yun

KAIST

NeurlPS 2023
Poster: Session 3, Wed 13 Dec

&) OptiML

Optimization and
Machine Learing Laboratory



Edge of Stability (EoS)

Full-batch GD: ©¢41 = ©; — nVL(©y)



Edge of Stability (EoS)

Full-batch GD: ©¢41 = ©; — nVL(©y)

2

Fma(V20)! then loss drops each iteration

Descent Lemma: If n <



Edge of Stability (EoS)

Full-batch GD: ©¢41 = ©; — nVL(©y)

2

Fma(V20)! then loss drops each iteration

Descent Lemma: If n <



Edge of Stability (EoS)

Full-batch GD: ©;11 = ©; —nVL(O;)

Descent Lemma: If n < ﬁﬂ’ then loss drops each iteration

EoS: sharpness (= Amax(V2L)) increases along GD trajectory then
saturates at 2/n [Cohen et al., 2021]
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Toy model

Objective function: L(x,y) = log(cosh(xy)), step size: n =2/16
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Toy model

Objective function: L(x,y) = log(cosh(xy)), step size: n =2/16
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Q. Trajectory alignment of GD in general setting?
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Q. Trajectory alignment of GD in general setting?

EoS threshold
(p,q) & <Residual, oS thresho )

NTK sharpness

Objective function: L(©) = 1 S°7  ¢(f(xi; ©) — yi)

~n

Assumption: ¢ is convex, Lipschitz loss with ¢/(0) = 0, ¢”(0) = 1.

i=1

1 < 2n
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(p.q) = (}7 D (F(xi:©) = yi), )mxz(/l\?TK))

» Minimum with sharpness 2/7 corresponds to (p, g) = (0,1)
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Setting: log-cosh loss ¢(p) = log(cosh(p)), 3-layer FC networks

. . . . ?(p
Observation: GD trajectories align on the curve | g = Q
p
1.0 \_ g=tme) 1.0 1.0 q=tme
0.8 0.8 0.8
T 0.6 0.6 = 0.6
0.4 0.4 04
RS 74 VB NI s,
- )
0.2 0.2 02 e Lestox b 0™
-5 0 5 5 -10 0 10
p p
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Experiment: multiple training points (CIFAR-10)

Setting: log-cosh loss ¢(p) = log(cosh(p)), CIFAR-10 2-class subset



Experiment: multiple training points (CIFAR-10)

Setting: log-cosh loss ¢(p) = log(cosh(p)), CIFAR-10 2-class subset

Observation: GD trajectories align on the curve independent of
initialization
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(a) 3-layer MLP (b) 3-layer CNN



Theory: Trajectory Alignment phenomenon provably occurs

Setting: training a two-layer linear network on a single data point
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Theorems 4.2 and 4.3 (informal, EoS regime)
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Setting: training a two-layer linear network on a single data point

Theorems 4.2 and 4.3 (informal, EoS regime)
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Summary

> We empirically demonstrate and provably establish the
trajectory alignment phenomenon of GD in EoS regime.

» Sheds light on the training dynamics of high-dimensional
non-convex NN optimization using GD with large step size.

» For more details, join our poster session (Session 3, Wed
13 Dec) or check our paper!

(openreview link)
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