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Responsible Al (RAI): Introduction and Motivation

Motivation: Al is increasingly being used in high-stakes decision-making contexts such as hiring,
criminal justice, and healthcare.

Setting: Under the umbrella of “responsible Al”, an emerging line of work has
attempted to formalize desiderata ranging over ethics, fairness, robustness, and
safety, many of which can be written as min-max problems involving optimizing

RAI
some worst-case loss under a set of predefined distributions. m m
CVaR Group
Problem: majority of recent work around these problems is fragmented and - DRO

usually focuses on optimizing one of these aspects at a time (DRO [Namkoong Worst Case
and Duchi, 2017, Duchi and Namkoong, 2018], GDRO [Sagawa et al., 2019], Margin
CVaR [Zhai et al., 2021a], Distribution Shift [Hashimoto et al., 2018, Zhai et al.,
2021Db]).

Proposal: a general game-theoretic framework for solving these problems and learning responsible Al
models. We propose practical algorithms to solve these games, as well as statistical analyses of
solutions of these games.



Problem Setup

 standard supervised prediction setting: iput random variable X € X C R%, output random
variable Y € ), and samples S = {(frz, y;) }i_, drawn from a distribution Py, over X’ x Y

* The empirical distribution Py, over the samples, set I1 of hypothesis functions A : X' — Y

. Goodne% of a predictor via a loss function £ : ) x V > R, which yields the empirical risk:
R(h) = Ep, U(h(z),y) where Ep_(f(z,y) =130, f(zi,m)

a

* Apart from having low expected risk, A is required to have certain properties.
e.g. robustness, fairness w.r.t subpopulations, superior tail performance, resistance to
adversarial attacks, etc - cast all these subproblems into an umbrella term “Responsible Al”.



RAI Risks - |

e Do not wish to compute an unweighted average over training samples - due to RAI
considerations.

Definition 1 (RAI Risks) Given a set of samples {(x;,y;)}_,, we define the class of empirical RAI
risks (for Responsible Al risks) as: Ry, (h) = sup,,cw. By (h(x),y), where W,, C A,,, is some set
of sample weights (a.k.a uncertainty set), and B, (f(x,y)) = > i, wi f(zi, vi).

e Given the empirical RAI risk of a hypothesis - naturally wish to obtain the hypothesis
that minimizes the empirical RAI risk

e Can be seen as solving a zero-sum game

Definition 2 (RAI Games) Given a set of hypothesis H, and a RAI sample weight set W,,, the class
of RAI games is given as: minpe g maxyew,, Euw(h(2),y).



RAI Risks - Il

Various choices of W _ give rise to various RAI risks.

Name W, Description
Empirical Risk Minimization { Piata } object of focus in most of ML/AI
used for designing
ATL’

Worst Case Margin

entire probability simplex

margin-boosting algorithms
[Warmuth et al., 2006, Bartlett et al., 1998]

Soft Margin

{w: 1\’L(1u||13dm) £ pat

used in the design of
AdaBoost [Freund and Schapire, 1995]

«-Conditional Value
at Risk (CVaR)

. 1
{w:weAp,w= ==}

used in fairness
[Zhai et al., 2021a, Sagawa et al., 2019]

Distributionally Robust
Optimization (DRO)

{U) : D(“)“Pdala) S pn}

various choices for D
have been studied
f-divergence [Duchi and Namkoong, 2018]

Group DRO

{Pdalin\((;’l)a Pdala(G‘z)y s Pdala(GK)}
Puaa(G;) is dist. of it" group

used in group fairness, agnostic
federated learning [Mobhri et al., 2019]

Table 1: Various ML/AI problems that fall under the umbrella of RAI risks.




RAI Games - Moving to ensembles

e Good worst-case performance over the sample weight set W _is generally harder,
especially for a simpler set of hypotheses

e Natural to consider deterministic ensemble models
o Gives us more powerful classes

Definition 3 (Deterministic Ensemble) Consider the problem of classification, where Y is a discrete
set. Given a hypothesis class H, a deterministic ensemble is specified by some distribution () € A g,
and is given by: hge.o(r) = argmax,cy Epogllh(x) = y|. Correspondingly, we can write the

deterministic ensemble RAI risk as Ry, (Dger:0(7)) = maxyew,, Euwl(Pgero(x), y).

e This admits a class of deterministic RAl games

Definition 4 (Deterministic Ensemble RAI Games) Given a set of hypothesis H, a RAI sample
weight set W,,, the class of RAI games for deterministic ensembles over H is given as:

min max E,l(hger-o(x),v).
CQGAH 'IUEVVI,,, w ( (6’,(,( )J)



RAI Games - Moving to random ensembles

e Aforementioned game is computationally less amenable because of the non-smooth
nature of de-randomized predictions.

e To this end, we consider the following randomized ensembles:

Definition 5 (Randomized Ensemble) Given a hypothesis class H, a randomized ensemble is
specified by some distribution () € Ay, and is given by: Plhypao(r) = y| = Epol|h(z) =
y|. Similarly, we can define its corresponding randomized ensemble RAI risk: Rygaw, (Q) =
maxXyew, EncQEwl(h(T),y).

Definition 6 (Randomized Ensemble RAI Games) Given a set of hypothesis H, a RAI sample
weight set W,,, the class of mixed RAI games is given as:

min max Ep oK., L(h(x).vy). |
QeAy weW,, h~Q=w ( ( ) /) ( )

e Much better class of zero-sum games

o linear in both the hypothesis distribution P well as the sample weights
o if the sample weight set is convex, is a convex-concave game.
o under some mild conditions, this game has a Nash equilibrium



RAI Algorithms - |

e Game Play - Both players rely on no-regret algorithms to decide their next action
o Follow-The-Regularized-Leader (FTRL) update for weights

o Best Response (BR) update for hypotheses

Algorithm 1 Game play algorithm for solving Equation (1)
Input: Training data {(x;, yi)}i,. loss function ¢, constraint set W,,, hypothesis set H, strongly
concave regularizer R over W,,, learning rates {n*}1_,
s fort < 1to7T do A
FTRL: w' < argmax,, .y S E (hE (), y) + i 'Reg(w)
BR: h' « argmin, g E, l(h(x),y)
end for
return PT = L S°7  wt, QT = Unif{h',... hT}

LA a0 b




RAI Algorithms - Il

Greedy - use Frank Wolfe (FW) for the inner maximization problem
o when it is smooth, updates given by:

Q! — (1 —a" Q"' +a'G, where G = argmin <Q, V(;)L(CJt_l)> :
Q

o when non-smooth, perform Moreau smoothing

L, (Q) = max EpgE,¢(h(x),y) + nReg(w).

weWn,

o a slightly different AdaBoost-like algorithm by relaxing the simplex constraint on Q

Algorithm 2 Greedy algorithms for solving Equation (1)
Input: Training data {(x;, y;)}i~,, loss function ¢, constraint set 1,,, hypothesis set H, strongly
concave regularizer IR over W,,, regularization strength 7, step sizes { azt}le
cfort < 1to71 do
G' = argmin,, (Q,VoLy(Q1))
FW: Q! + (1 —a?)Qt! + a!G* / Gen-AdaBoost: Q! < Q' + oGt
end for
return Q7
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Experiments

Goal: demonstrate the generality of proposed RAI methods by studying a well studied
problem i.e. subpopulation shift under various settings

O Domain-oblivious (DO): we do not know the sub-populations [Hashimoto et al., 2018, Lahaoti et al., 2020]
m ¥2-DRO constraint set to control

O  Domain-aware (DA): where we know the sub-populations [Sagawa et al., 2019]
m  Group DRO constraint set

O  Partially domain-aware (PDA): where only some might be known
|

intersection over Group DRO constraints over the known domains and x2 constraints to control
Baselines -

m the quasi-online algorithm for Group DRO [Sagawa et al., 2019] (Online GDRO)
ITLM-inspired SGD algorithm [Zhai et al., 2021b, Shen and Sanghavi, 2018] for
x? DRO (SGD (x?))

o Ensemble models AdaBoost [Schapire, 1999].

o Deterministic classifiers trained on empirical risk (ERM) and DRO risks

e ——
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Experiments - Results

e RAI-FW and RAI-GA methods significantly improve the worst-case performance with
only 3-5 base learners across all datasets in all three settings, while maintaining
average case performance.

e The plug-and-play framework allows for several different to enhance various responsible
Al qualities at once. RAl is able to optimize effectively for both known and unknown
subpopulations

Table 2: (Table 1 in the paper) Mean and worst-case expected loss for baselines, RAI-GA and RAI-FW.
(Complex) indicates the use of larger models. Constraint sets W, are indicated in (.). Each experiment is carried
out over three random seeds and confidence intervals are reported.

W ; COMPAS CIFAR-10 (Imbalanced) CIFARI10 CIFAR100
Sctting Algorithm
Average  Worst Group  Average  Worst Class  Average  Worst Class  Average  Worst Class

DO ERM 31.3 +0.2 31.7 +0.1 12.1 +0.3 304 +0.2 8.3 +0.2 21.3 +05 252 +0.2 64.0 +0.7
(Complex) RAI-GA (_\’2) 31.3 +0.2 31.2 +0.2 11.7 +£0.4 29.0 +0.3 8.2 +0.1 19.0 +0.1 25.6 £0.4 56.8 +0.8
diad RAL-FW (x?) 31.2 +0.1 31.4 +03 11.9 +0.1 29.1 +0.2 8.0 +0.3 154 +0.4 25.4 +0.2 58.0 £1.1
ERM 32.1 +£0.3 34.6 +0.4 14.2 +0.1 33.6 +0.3 11.4 404 27.0 +0.1 27.1 £0.3 66.0 £1.1
AdaBoost 31.8 +0.4 32.6 +£0.3 15.2 +£0.2 40.6 +0.2 12.0 +0.1 28.7 +0.3 28.1 £0.2 722412
DO SGD (,\2) 32.0 +0.2 33.7 102 13.3 +0.3 31.7 +0.4 11.3 +0.3 24.7 +0.1 27.4 +0.1 65.9 +1.2
RAL-GA (x*) 31.5 0.2 332403 14.0+0.1 322402 108404  25.0+02 274104  65.0 £0.8
RAI-FW (\2) 31.6 +0.1 32.5 +0.5 13.9 +0.1 32.6 +0.3 10.9 +0.4 234 +0.2 27.5 £0.1 63.8 +0.6
DA Online GDRO 31.7 £0.2 322403 13.1+£02 266402 11.2+01 217403 273+01  57.0 £05
RAI-GA (Group) 32.0 0.1 32.7 0.1 13.0 +£0.3 27.3 +0.4 11.5 +0.1 22.4 +0.2 27.4 +0.2 56.6 +1.1
RAIL-FW (Group) 32.1 £0.2 32.3 +0.2 13.0 +£0.2 26.0 +0.1 11.4 +0.3 20.3 +0.1 27.9 +0.2 52.9 +0.9
PDA Onlinc GDRO 31.5 +0.1 32.7 0.2 13.4 +0.1 32.2 102 11.3 +0:2 25.2 +0.1 27.7 0.2 64.0 +0.8

RAI-GA (Group N x?) 314404 32.94+0.2 13.0 +0.3 30.1 £0.1 10.8 +0.2 23.7 +0.2 27.5 +0.1 62.5 +0.6
RAI-FW (Group N x2) 31.8 402 32.3 +0.1 13.5 403 294 +03 11.2 +0.4 24.0 +0.2 279 +0.3 58.9 +0.7
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