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Problem and Contributions

Problem: adversarial training (AT) is well-studied on small-scale datasets (CIFAR) and ResNets,
but not explored in the modern setup (ImageNet, new architectures)

Our contributions:
We revisit AT on ImageNet and propose a training scheme effective across architectures.
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We achieve SOTA robust classifiers w.r.t. ℓ∞. And show that using ConvStem instead of
PatchStem boosts the generalization to the unseen ℓ1 and ℓ2 threat models.
We uncover a surprising phenomena: increasing test-time resolution enhances robustness.
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Proposed Adversarial Training setup

Aspects considered: initialization, augmentations and training time/epochs.

We do 2-step AT with APGD for the ℓ∞-threat model at radius 4/255, and never train for ℓ2 and
ℓ1 threat models.

Using strong pre-trained models as initialization
yields more robust models
allows us to use heavy augmentations which in particular with longer training yields
robustness gains, contrary to suggestions from prior work [1].
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ConvStem vs PatchStem

Both ViTs and ConvNeXts have a PatchStem, which has strong downsampling in a single layer.

Use ConvStem instead:
Downsamplings spread across multiple
layers.
Longer training also possible without
overfitting.
ConvStem improves ℓ∞ robustness and
boosts generalization to unseen threat
models.

Architecture Adversarial training w.r.t ℓ∞
clean ℓ∞ ℓ2 ℓ1

ConvNeXt-T 72.4 48.6 38.0 14.9
ConvNeXt-T + CvSt 72.7 +0.3 49.5+0.9 48.4 +10.4 24.5 +9.6

ViT-S 69.2 44.0 37.5 15.1
ViT-S + CvSt 72.5 +3.3 48.1 +4.1 50.4 +12.9 26.7 +11.6
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What is the proposed scheme for adversarial training for
high-resolution datasets like ImageNet?

Strong pre-trained models as initialization
+

Heavy augmentations
+

longer training
+

Using a ConvStem

Does it scale?



Yes, even to Large models

We use the previously found training scheme and train models of size Small ( <30M params),
and Large (>80M params) for 250/300 epochs.

Our ConvNeXt + Convstem yields the most robust models to ℓ∞ whereas ViT + CovnStem gives
the best generalization to unseen threat models.
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The training scheme scales, without overfitting to yield SOTA
robust classifiers.

Our robust models are publically available.

Robust ImageNet models can be used for a lot of downstream
tasks. We show that using these models as initialization
allows us to train SOTA robust semantic segmentation

models [4].



Increasing test-time resolution

Well known: Increasing resolution at test-time improves clean performance.
Is this true also for robust accuracy despite the threat model becoming more powerful?

Surprisingly, increasing input-resolution at test-time also improves robustness, with
diminishing returns for very high resolutions.
Remark: We never train at the increased resolution.
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ConvStem models are more stable (their decay for higher resolutions is not as severe)
compared to PatchStem models.
Also seen for perturbation radius larger than training (6/255 and 8/255).
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