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Given data without labels
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Given data without labels

What can we learn from unlabeled data? Halfspace!

Unsupervised Halfspace Learning
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Problem

Input: Unlabeled data from distribution P in R?.
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Input: Unlabeled data from distribution P in R%.
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Problem

Input: Unlabeled data from distribution P in R%.
There is an e-margin halfspace.

Output: Normal vector U to within TV distance 6.

Main result

There is an algorithm that can learn any affine product
logconcave distribution with e-margin to within TV distance

& with time and sample complexity that are poly(d,1/¢,1/
6) whp.
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Warm-up: isotropic, symmetric margin

- Isotropic distribution (mean zero, covariance identity)
- Margin symmetric with the origin.
- Can we find the halfspace efficiently?
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- Isotropic distribution (mean zero, covariance identity).
- Margin symmetric with the origin.

- Can we find the halfspace efficiently? 7+ isotropic density

q: isotropic density with margin
restricted to
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Find the direction that
maximizes variance.
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Warm-up: isotropic, symmetric margin

- Isotropic distribution (mean zero, covariance identity).
- Margin symmetric with the origin.

- Can we find the halfspace efficiently? 7+ isotropic density

q: isotropic density with margin
restricted to
{x:u'x < —aoru'x = aj} p(x) 4

1\,

Find the direction that
maximizes variance.

PCA!
(Principal Component
Analysis)

X
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Next: isotropize the data with margin
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Next: isotropize the data with margin

- Make the data isotropic (mean zero, covariance identity)
- PCA fails.

isotropize
Exx' =1,
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- Make the data isotropic (mean zero, covariance identity)
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isotropize re-weight
Exx' =1,

Input Data Distribution

Contrastive Moments

NeurlPS 2023




Next: isotropize the data with margin

- Make the data isotropic (mean zero, covariance identity)

- PCA fails.

- Re-weight! v
isotropize re-weight
Exx' =1,

Input Data Distribution

Contrastive Moments

NeurlPS 2023




General data distribution

- No assumption of isotropy, or even mean zero!
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General data distribution

- No assumption of isotropy, or even mean zero!

P: Affine transformation of product of symmetric logconcave
distributions with € margin in an unknown direction u.

d=1 d=2
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Known: data drawn from P .
Unknown: logconcave distribution g, direction and location of the
margin u, a, b, affine transformation A.
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Algorithm: Contrastive Moments

Step 1: Make the data isotropic s ° o

(mean zero, covariance identity). o
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Algorithm: Contrastive Moments

Step 1: Make the data isotropic

X) A
(mean zero, covariance identity). p(x)

N\

» X

Step 2: Compute the re-weighted sample
mean [; = Avg(e“i”x”zx),i € {1,2}, and
the top eigenvector v of the re-weighted
sample covariance £ = Avg(e“3”x”2xxT).

re-weighted density

p(x) 4

AN

I x
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Algorithm: Contrastive Moments

Step 1: Make the data isotropic . O:o o %o @ isotropic symmetric density
. . . ° o o q: isotropic density with margin

(mean Zero, covariance |dent|ty). ) o0 00

© 0p0

(o] 00 © o
(0]
0 %050 \ p(x) 4
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Step 2: Compute the re-weighted sample /v

mean y; = Avg(e“i”x”zx),i € {1,2}, and
the top eigenvector v of the re-weighted Two cases of margin
sample covariance X = Avg(e“3”x”2xxT).

> X

p(x) 4 p(x) 4

VAN,

> X > X

symmetric margin: re-weighted covariance
asymmetric margin: re-weighted mean
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Algorithm: Contrastive Moments

Step 1: Make the data isotropic
(mean zero, covariance identity). o

Step 2: Compute the re-weighted sample
mean y; = Avg(e“i”x”zx),i € {1,2}, and

ﬁ Projection
the top eigenvector v of the re-weighted
sample covariance X = Avg(e“3”x”2xxT). I'\
I 11
I |
j : j i j{ !
" e —

Step 3: Project data along vectors uq, iy, v. Max margin
Output the one with the largest margin.
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Main result

Theorem 1. There is an algorithm that can learn any affine
product logconcave distribution with e-margin to within TV
distance § with time and sample complexity that are
poly(d,1/&,1/8) with high probability.
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Relevant Work

Non-gaussian Component Analysis (NGCA)

Given distribution as a product of a d-1 dimensional Gaussian and
a distinct distribution g in an unknown direction v.

Goal: identify non-Gaussian direction v.

Assumption: g and N(0,1) matches first k moments, and differs in
k+1 moments.

Order grows with k.
To get € TV distance, we need k = () (log (%))

Independent Component Analysis (ICA)

Contrastive Moments

Given samples from an unknown affine transformation of a
product distribution.

Goal: recover the affine transformation.

Assumption: at most one component is Gaussian.
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Future directions

Analysis refinement.
Linearind, 1/€?

* Distribution generalization.

* Robust learning halfspaces.

* |ntersection of halfspaces.

e Contrastive learning with data augmentation.

More in the paper : )
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