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Background: Clinical Predictive Modeling

Clinical Event Sequence Predictive Model Future Event of Interest
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* |[nput: Existing event sequence

* Predict: Occurrence of future event of interest
* E.g., hospital readmission, mortality, diagnosis of heart failure
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Problem: Domain Gap
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Domain Generalization (DG)

e Goal

* Develop a model on the source data that can effectively handles potential domain shifts when
applied to the target data
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Jindong Wang et al. Generalizing to Unseen Domains: A Survey on Domain Generalization. IEEE Transactions on Knowledge and Data Engineering, 2022.
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New Challenges in Medical DG
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Conventional Domain Generalization Medical Domain Generalization
* Known domain IDs * Unknown domain IDs
* Sharable characteristics across domains * Distinct characteristics across domains

* Existing DG relies on domain IDs
e Patients can be divided into numerous latent domains based on different features

* Existing DG attempts to train a single model
* Patients from different domains possess distinct characteristics and require different treatment approaches



UNIVERSITY OF

ILLINOIS Z. Wu, H. Yao, D. Liebovitz, J. Sun. An Iterative Self-Learning Framework for Medical Domain Generalization. NeurlPS’23.

uuuuuu “CHAMPAIGN

Insight 1: Decoupled Domain Discovery

* Problem:
* Patients can be categorized into numerous latent domains based on different features

* The categorization can be difficult to obtain and vary across different tasks

* |dea:
* Decouple clinical features
* Discover the domains for each type of feature
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Insight 2: Domain-Specific Model customization

* Problem:
* Unique characteristics of patients in different domains

e |dea:
* Train customized classifiers for each domain
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Method: A Self-Learning Framework for Domain Generalization
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SLDG Is Robust Against Spatial and Temporal Domain Shifts

elCU MIMIC-1V
Method Readmission Mortality Readmission Mortality
AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

Oracle 0.219 (0.01) 0.677 (0.01) 0.271 (0.01) 0.839 (0.01) | 0.282 (0.01) 0.693 (0.00) 0.428 (0.00) 0.898 (0.01)
Base 0.104 (0.02) 0.510(0.01) 0.230(0.01) 0.803 (0.01) | 0.237 (0.01) 0.665 (0.01) 0.374 (0.01) 0.861 (0.00)
DANN | 0.135(0.01) 0.538 (0.01) 0.245 (0.01) 0.808 (0.01) | 0.247 (0.01) 0.673 (0.01) 0.380 (0.02) 0.873 (0.02)
MLDG | 0.104 (0.01) 0.525 (0.01) 0.224 (0.01) 0.797 (0.01) | 0.205 (0.01) 0.637 (0.02) 0.360 (0.01) 0.857 (0.01)
ManyDG | 0.150 (0.01) 0.549 (0.01) 0.259 (0.01) 0.814 (0.01) | 0.249 (0.01) 0.676 (0.01) 0.388 (0.01) 0.880 (0.01)
IRM 0.136 (0.01) 0.538 (0.01) 0.252(0.02) 0.811(0.01) | 0.242 (0.00) 0.668 (0.01) 0.387 (0.01) 0.876 (0.01)
MMLD | 0.167 (0.01) 0.578 (0.00) 0.256 (0.01) 0.818 (0.01) | 0.250(0.02) 0.679 (0.01) 0.393 (0.01) 0.887 (0.01)
DRA 0.148 (0.01) 0.551 (0.01) 0.249 (0.01) 0.810(0.01) | 0.246 (0.01) 0.670(0.01) 0.387 (0.01) 0.875(0.01)
SLDG 0.186 (0.01)* 0.623 (0.01)* 0.268 (0.01)* 0.824 (0.01)* |0.274 (0.01)* 0.690 (0.01)* 0.416 (0.00)* 0.899 (0.01)*




ILLINOIS Z. Wu, H. Yao, D. Liebovitz, J. Sun. An Iterative Self-Learning Framework for Medical Domain Generalization. NeurlPS’23.

uuuuuu “CHAMPAIGN

" Zhenbang Wu
Conclusion CS Ph.D. Student @ UIUC

zw12@illinois.edu

Goal

* Develop a clinical predictive model on the source data that effectively handles potential domain shifts
when applied to the target data

Challenges
e Unknown domain IDs
e Distinct characteristics across domains

Method

e SLDG: a self-learning framework for domain generalization
* |teratively discovers decoupled domains and trains customized classifiers for each discovered domain

Result
e Achieves up to 11% improvement in the AUPRC score over the best baseline
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