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« We propose Label-only Model inversion via Knowledge Transfer (LOKT) by
transferring decision knowledge from the target model to surrogate models and
performing white-box attacks on the surrogate models.

« We propose a new T-ACGAN to leverage generative modeling and the target model
for effective knowledge transfer.

« We perform analysis to support that our surrogate models are effective proxies for
the target model for MI.
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Model inversion (M) attacks aim to infer and reconstruct private training data
by abusing access to a model.

Private Data
(l.e.: Face images)

Trained Model | Releasing Trained Model

Model
Training

@ MI Attack

attack s output

attack an identity



We focus on label-only model inversion attack which is the most
challenging setup.
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SOTA Label-only Model Inversion attacks employ black-box search
on the target model T to reconstruct private data.

Mostafa et. al. Label-only model inversion attacks via boundary repulsion. In CVPR 2022.



Decision Knowledge Transfer
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Casting Label-only MI Attack as a White-box MI Attack



Real/ fake
classification

Identity
Classification

Decision Knowledge Transfer

Lpc = —FEllog P(s = Fake|zy)] — Ellog P(s = Real|x,)]
— Ellog P(c = ylxy)]



33000
16500 Ii
0_
1.00 |
|
0.98 -
Property P1:
For high-likelihood samples under oosl ol S
S, it is likely that they also have high .
likelihood under T. *
0.94 1
0.92

0'93.00 020 040 0.60 0.80 1.00 0 9000 18000
Pr



epoch = 0
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DNNs Learn Patterns First

Devansh et.al. A closer look at memorization in deep networks. In ICML, 2017
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Setup Attack Attack acc. T KNN dt. | Setup Attack Attack acc. T KNN dt. |

T  =FaceNetgd DREPMI 73.93 £4.98 1284.41 T -vGGle BREPMI 57.40 £4.92 1376.94
Dpriv = CelebA CoD 81.00£479 1298.63 D,riv = CelebA CoD 7133 +439 1364.47
Dyup = CelebA LOKT S 92.80 £2.59 1207.25 D . = CelebA LOKT S 85.60 +=3.03  1252.09
Sen 9393 +£2.78 1181.72 Sen 8727 +197 1246.71
BREPMI 7147 x+£5.32 1277.23
T —IR152 T — FaceNet64 BREPMI 43.00 + 5.14  1470.55
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« We propose Label-only Model inversion via Knowledge Transfer
(LOKT) by transferring decision knowledge from the target model to
surrogate models and performing white-box attacks on the surrogate
models.

« We propose a new T-ACGAN to leverage generative modeling and the
target model for effective knowledge transfer.

« We perform analysis to support that our surrogate models are
effective proxies for the target model for M.
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