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Empirical Risk Minimization

We consider the following finite-sum minimization:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

f (w ; i)
}
, (1)

where f (·; i) : Rd → R is Lipschitz smooth and possibly non-convex for
i ∈ [n] := {1, . . . , n}.
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Basic Assumptions

Assumption 1
Suppose that f ∗i := minw∈Rd f (w ; i) > −∞, i ∈ {1, . . . , n}.

Assumption 2
Suppose that f (·; i) is L-smooth for all i ∈ {1, . . . , n}, i.e. there exists a constant
L ∈ (0,+∞) such that:

∥∇f (w ; i) −∇f (w ′; i)∥ ≤ L∥w − w ′∥, ∀w ,w ′ ∈ Rd . (2)
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Some Other Assumptions

Assumption 3
Suppose that f (·; i) satisfies average PL inequality for some constant µ > 0 such that

1

n

n∑
i=1

∥∇f (w ; i)∥2 ≥ 2µ
1

n

n∑
i=1

[f (w ; i) − f ∗i ], ∀w ∈ Rd . (3)

where f ∗i := minw∈Rd f (w ; i).

Assumption 4
Suppose that the best variance at w∗ is small, that is, for ε > 0 and for some P > 0

inf
w∗∈W∗

(
1

n

n∑
i=1

∥∇f (w∗; i)∥2

)
≤ Pε, (4)

Assumption 5
Using Algorithm 1, let us assume that there exist some constants M > 0 and N > 0
such that at each epoch t = 1, . . . ,T, we have for i = 1, . . . , n:

∥∇f (w
(t)
i−1;π(t)(i)) −∇f (w∗;π(t)(i))∥2

≤ M⟨∇f (w
(t)
i−1;π(t)(i)) −∇f (w∗;π(t)(i)),w

(t)
i−1 − w∗⟩ + N

1

n

n∑
i=1

∥w (t)
i − w

(t)
0 ∥2, (5)
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Shuffling-Type Gradient Algorithm

Algorithm (Shuffling-Type Gradient Algorithm for Solving (1))

1: Initialization: Choose an initial point w̃0 ∈ dom (F ).
2: for t = 1, 2, . . . ,T do

3: Set w
(t)
0 := w̃t−1;

4: Generate any permutation π(t) of [n] (either deterministic or random);
5: for i = 1, . . . , n do

6: Update w
(t)
i := w

(t)
i−1 − η

(t)
i ∇f (w

(t)
i−1;π(t)(i));

7: end for
8: Set w̃t := w

(t)
n ;

9: end for
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New Framework for Convergence to a Global Solution

Theorem 1
Assume that Assumptions 1, 2, 3, and 5 hold. Let {w̃t}Tt=1 be the sequence generated

by Algorithm 1 with the learning rate η
(t)
i = ηt

n
where 0 < ηt ≤ min

{
n

2M
, 1

2L

}
. Let the

number of iterations T = λ
ε3/2 for some λ > 0 and ε > 0. Constants C1, C2, and C3

are defined in (7) for any γ > 0. We further define K = 1 + C1D3ε3/2 and specify the

learning rate ηt = Kηt−1 = K tη0 and η0 = D
√
ε

K exp(λC1D3)
such that

D
√

ε
K

≤ min
{

n
2M

, 1
2L

}
for some constant D > 0. Then we have

1

T

T∑
t=1

[F (w̃t−1) − F∗] ≤
K exp(λC1D3)

C3Dλ
∥w̃0 − w∗∥2 · ε +

C2

C3
σ2
∗, (6)

where F∗ = minw∈Rd F (w), σ2
∗ is the variance at w∗, w∗ is a global solution of F , and

C1 = 8L2

3
+ 14NL2

M
+ 4γL4

6M
,

C2 = 2
M

+ 1 + 5
6L2 + 8N

3ML2 + 5γ
12M

,

C3 = γ
γ+1

µ
M
.

(7)
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New Framework for Convergence to a Global Solution

Corollary 1
Suppose that the conditions in Theorem 1 and Assumption 4 hold. Choose C1Dλ = 1
and ε = ε̂/G such that 0 < ε̂ ≤ G with the constants

G =
2C1D2e

C3
∥w̃0 − w∗∥2 +

C2P

C3
, where

C1 = 8L2

3
+ 14NL2

M
+ 4L2

3M
,

C2 = 2
M

+ 1 + 5
6L2 + 8N

3ML2 + 5
12ML

,

C3 = 1
L2+1

µ
M
.

Then, the we need T = λG3/2

ε̂3/2 epochs to guarantee

min
1≤t≤T

[F (w̃t−1) − F∗] ≤
1

T

T∑
t=1

[F (w̃t−1) − F∗] ≤ ε̂.
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Computational Complexity

Table: Comparisons of computational complexity (the number of individual gradient evaluations)
needed by SGD algorithm to reach an ε̂-accurate solution w that satisfies F (w) − F (w∗) ≤ ε̂ (or

∥∇F (w)∥2 ≤ ε̂ in the non-convex case). SS: Shuffling Schemes; GS: Global Solution.

Settings References Complexity SS GS

Convex
[Nemirovski et al., 2009,
Shamir and Zhang, 2013] (1) O

(
∆2

0+G2

ε̂2

)
✗ ✓

[Mishchenko et al., 2020,
Nguyen et al., 2021] (2) O

(
n

ε̂3/2

)
✓ ✓

PL condition [Nguyen et al., 2021] Õ
(

nσ2

ε̂1/2

)
✓ ✓

Star-convex
related

[Gower et al., 2021] (3) O
(

1
ε̂2

)
✗ ✓

Non-convex
[Ghadimi and Lan, 2013] (5) O

(
σ2

ε̂2

)
✗ ✗

[Nguyen et al., 2021,
Mishchenko et al., 2020]
(5)

O
(

nσ
ε̂3/2

)
✓ ✗

Our setting
(non-convex)

This paper(4) O
(

n(N∨1)3/2

ε̂3/2

)
✓ ✓
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Numerical Experiments

Table: Datasets used in our experiments

Data name # Samples # Features Networks layers Sources
Diabetes 442 10 300-100 [Efron et al., 2004]
Life Expectancy 1649 19 900-300-100 [Repository, 2016]
California Housing 16514 8 900-300-100 [Repository, 1997]

Figure: The train loss produced by Shuffling SGD algorithm for three datasets: Diabetes, Life
Expectancy and California Housing.
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Our Contributions

▶ We investigate a new framework for the convergence of a shuffling-type gradient
algorithm to a global solution. We consider a relaxed set of assumptions and discuss
their relations with previous settings. We show that our average-PL inequality holds
for a wide range of neural networks equipped with squared loss function.

▶ Our analysis generalizes the class function called star-M-smooth-convex. This class
contains non-convex functions and is more general than the class of star-convex
smooth functions with respect to the minimizer (in the over-parameterized settings).
In addition, our analysis does not use any bounded gradient or bounded weight
assumptions.

▶ We show the total complexity of O( n
ε̂3/2 ) for a class of non-convex functions to reach

an ε̂-accurate global solution. This result matches the same gradient complexity to
a stationary point for unified shuffling methods in non-convex settings, however, we
are able to show the convergence to a global minimizer.
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Related Work

▶ General. [Brutzkus et al., 2018, Soudry et al., 2018, Arora et al., 2019, Du et al., 2019b,
Du et al., 2019a, Allen-Zhu et al., 2019, Zou and Gu, 2019, Zou et al., 2018].

▶ Polyak-Lojasiewicz (PL) condition and related assumptions. [Polyak, 1964],
[Karimi et al., 2016, Nesterov and Polyak, 2006, De et al., 2017, Gower et al., 2021,
Haochen and Sra, 2019, Ahn et al., 2020, Nguyen et al., 2021, Schmidt and Roux, 2013,
Vaswani et al., 2019, Sankararaman et al., 2020]

▶ Over-paramaterized settings for neural networks. [Schmidt and Roux, 2013],
[Ma et al., 2018, Meng et al., 2020, Loizou et al., 2021, Zhou et al., 2019]

▶ Star-convexity and related conditions. [Nesterov and Polyak, 2006, Lee and Valiant, 2016,
Bjorck et al., 2021, Zhou et al., 2019, Hinder et al., 2020, Hardt et al., 2018, Jin, 2020,
Gower et al., 2021]

Our Poster:

Poster Session 1 - Great Hall & Hall B1+B2 #1101
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