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General problem setup

e Data Z = (X,Y) € Z distributed according to p, where Y € {1,..., K} is the label

e Training dataset S = {Z1,...,Z,} ~ u®n

Randomized algorithm A : Z" — W

e Model w for every & makes the prediction ¥ ~ Py x o wew

Loss function £(z,w) = E?Nme,w(Y”vw) []l{wﬁf’}]
e Empirical risk: £(s,w) = + 3" £(2;, w) and Population risk: £(w) = Ez~,[¢(Z, w)]
i=1

The goal is to study generalization error:

[ gen(S, W) := L(W) — L(S, W) ]




Overview of results

e One-step prediction model:
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e Two-step prediction model:

« a new notion of MDL of latent variables

« Generalization bound:

2\/2 x MDL(Latent Variables) + K + 2
n

o Practical implications: suggests new

symmetric data-dependent priors
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One-step prediction

e Approach. Extension of compressibility framework of Blum & Langford (2003) by considering;:

« block-coding or information-theoretic compression

« lossy compression or rate-distortion analysis
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e Ceneral idea. Consider a given training dataset S and ghost dataset S’, that are rearranged
in an indistinguishable manner as 32".
o If the set of rearranged predictions of S and S’ can be “described” using few bits, then
the algorithm generalizes well.

o To “describe” the predictions, we use source coding literature in information theory
and in particular the information theoretic covering lemma.
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e Ceneral idea. Consider a given training dataset S and ghost dataset S’, that are rearranged
in an indistinguishable manner as 32".
o If the set of rearranged predictions of S and S’ can be “described” using few bits, then
the algorithm generalizes well.
o To “describe” the predictions, we use source coding literature in information theory
and in particular the information theoretic covering lemma.

o This introduces a new notion of MDL:

Dxr (P)?f)?’w(?, Y'|X, X, W) HQ) :

for some appropriately “symmetric” prior Q over Y2".



Rearrangement strategies for one-step prediction model

e Type I symmetry. (34, 3i+n) is distributed uniformly over {(Z;, Z;), (Zi, Z)}.
o We derive results similar to CMI (Steinke & Zakynthinou, 2020) and f~-CMI
(Harutyunyan et al., 2021) literature

« Makes a connection between frameworks of Blum-Langford and CMI
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e Type II symmetry. 3°" is a a random permutation (reshuffle) of (S, S").

« new results in terms of the function

x4+
2

hp(z,z") = 2hb< ) — hy(z) — ho(a"),

which is two times Jensen-Shannon divergence between two binary Bernoulli
distributions with parameters = and z’.

o The bounds are O(1/n) for the realizable setup.
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e Type II symmetry. 3°" is a a random permutation (reshuffle) of (S, S").

« new results in terms of the function
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hp(z,z") = 2hb< ) — hy(z) — ho(a"),

which is two times Jensen-Shannon divergence between two binary Bernoulli
distributions with parameters = and z’.

o The bounds are O(1/n) for the realizable setup.

e Lossy compressibility



Two-step prediction model

e Suitable for optimization:

trainine
. Encoder: guarantees the good generalizability by S W= (W, Wa)
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« Decoder: minimizes the empirical risk.
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o I(U; X) is perceived to capture MDL and hence the generalization performance,

« I(U;Y) captures the “relevance” for prediction and hence the empirical risk performance.



Two-step prediction model

e Suitable for optimization:

trainine
« Encoder: guarantees the good generalizability by S e > W= (W, Wa)

extracting “good” representations, ~— T o
Yoo X Pop f- U P, ¥

« Decoder: minimizes the empirical risk.

e Information bottleneck principle: I(U;Y) — BI(U; X)

o I(U; X) is perceived to capture MDL and hence the generalization performance,

« I(U;Y) captures the “relevance” for prediction and hence the empirical risk performance.
e Information bottleneck critics:

« no non-vacuous theoretical guarantees,

« Experimental evidence shows dependence of the generalization error on the so-called
geometrical compression rather than I(U; X),

o Mutual information is invariant to bijection and does not reflect the “structure” or
“simplicity” of the encoder/decoder.



Main result

-

g5, w, [Dicr (PSR w, (U, UX, X/, Wo)||Q )] + K +2
Es,w[gen(S,W)] < 2 ,

where Q is a type-III symmetric prior.

e The bound only depends on the encoder and complexity of the latent variables.

e While the mutual information captures the information leakage, the above KL-divergence
captures the encoder structure.

e The lossy version explains the geometrical compression.



Experimental implications

e In Variational IB, the prior is fixed, e.g. N (O, I1).

e In contrast, inspired by our results, we introduce new symmetric priors. These priors
« are data-dependent,
« are “learned” along the iterations,

« can be applied in “lossless” and “lossy” manner.
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