Extracting Reward Functions
from Diffusion Models
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Running example: Maze2D

From Fu, Justin, et al. "D4rl: Datasets for deep data-driven reinforcement
learning." arXiv preprint arXiv:2004.07219 (2020).



Diffusing trajectories: Training

Method of Janner et al. 2022

Diffusion step t=20 Diffusion step t=5 Diffusion step t=0

Janner, Michael, et al. "Planning with Diffusion for Flexible Behavior
Synthesis." International Conference on Machine Learning. PMLR, 2022.



Diffusing trajectories: Inference

Method of Janner et al. 2022
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Diffusing trajectories: Inference

Method of Janner et al. 2022
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Undirected trajectory distribution
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Denoising process




Guiding the base model with a reward function
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Guidance leads to high-performing trajectories
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Given a base model and a reward estimate, we can estimate
the expert denoising direction
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What if what you have is an expert model and a base model?
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What if what you have is an expert model and a base model?
Then you can extract a relative reward function!
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Optimization objective

Loss(0) = || Vrelative reward, — (expert model-base model)|| 4
A lot of the paper is about showing the

minimizer of this loss is well-defined and
has the properties we want
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Relevance of extracting rewards

Interpretability and Alignment Quantifying preferences in behaviors
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Gym Locomotion environments:
High-dimensional control

Halfcheetah Hopper Walker2D

Environments by Brockman, Greg, et al. "Openai gym." arXiv preprint
arXiv:1606.01540 (2016).



The method also works in higher-dimensional locomotion environments
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Steering with the learned reward improves
performance in Locomotion tasks
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And continues working for large-scale image generation models (Stable Diffusion)

Harmless images Vreward =~ expertmodel — base model
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Come talk to us!



