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Running example: Maze2D

From Fu, Justin, et al. "D4rl: Datasets for deep data-driven reinforcement 
learning." arXiv preprint arXiv:2004.07219 (2020).



Diffusing trajectories: Training
Method of Janner et al. 2022

Diffusion step t=0Diffusion step t=5Diffusion step t=20

Janner, Michael, et al. "Planning with Diffusion for Flexible Behavior 
Synthesis." International Conference on Machine Learning. PMLR, 2022. 
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Diffusing trajectories: Inference
Method of Janner et al. 2022



Undirected trajectory distribution
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Diffusing trajectories: Inference
Method of Janner et al. 2022
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Guiding the base model with a reward function
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Guidance leads to high-performing trajectories
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Given a base model and a reward estimate, we can estimate 
the expert denoising direction
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What if what you have is an expert model and a base model?
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What if what you have is an expert model and a base model?
Then you can extract a relative reward function!



A lot of the paper is about showing the 
minimizer of this loss is well-defined and 
has the properties we want

Optimization objective

Loss(θ) = || ∇relative rewardθ – (expert model–base model)|| 2
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Loss(θ) = || ∇relative rewardθ – (expert model–base model)|| 2

Relative reward function extraction
Denoising process
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Heatmap of learned relative reward



Relevance of extracting rewards
Interpretability and Alignment Quantifying preferences in behaviors



Gym Locomotion environments:
High-dimensional control

Environments by Brockman, Greg, et al. "Openai gym." arXiv preprint 
arXiv:1606.01540 (2016). 

Halfcheetah Hopper Walker2D



The method also works in higher-dimensional locomotion environments

Expert trajectory distribution

Beginner trajectory distribution

Steering with the learned reward improves 
performance in Locomotion tasks

𝛁𝐫𝐞𝐰𝐚𝐫𝐝 ≈ 𝐞𝐱𝐩𝐞𝐫𝐭	𝐦𝐨𝐝𝐞𝐥−𝐛𝐚𝐬𝐞	𝐦𝐨𝐝𝐞𝐥



And continues working for large-scale image generation models (Stable Diffusion) 

Harmless images

Potentially harmful images

Harmful images are penalized by the 
learned reward function

𝛁𝐫𝐞𝐰𝐚𝐫𝐝 ≈ 𝐞𝐱𝐩𝐞𝐫𝐭	𝐦𝐨𝐝𝐞𝐥−𝐛𝐚𝐬𝐞	𝐦𝐨𝐝𝐞𝐥



Come talk to us!


