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> Dataset Distillation / Condensation

Definition: Dataset condensation distills a large real-world dataset into a
small synthetic dataset, with the goal of training a network from scratch
on the latter that performs similarly to the former.
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Fig.1 Dataset distillation problem paradigmi(!l.

[1] Data distillation: A survey. arXiv:2301.04272 2
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> Problem Definition

We expect a network #,s trained on the small dataset S to have similar
performance to a network @,- trained on the large training set 7" on the unseen
test dataset, that is:

ExiNPT [f (¢07 (Xi>7 y)] = EXiNPT [e (¢93 (Xi)7 y)] )
s.t. 7 = argmin £7 (§7) = arg min 1 Z C(po7(X4),y),

o7 67 T (xip)eT
1
9° = arg min 58(95) = argmin — Z £ (pgs (x:),y)
0° 0s S (xip)ES

where P, represents the real distribution of the test dataset.
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» Exsting Methods

Existing DC methods [1-4] first initialize the dataset S € RYs*P*H>W 4q g set of

learnable parameters in high-dimensional pixel space. ° ]gsi fe nuinber of synthetic images
° . channe€is

* H:image’s height
* J:image’s width

Optimization:

In the first dataset distillation work DD [1], dataset S is treated as a
hyperparameter in a bi-level optimization problem as follows:

Accuracy matching: §* = argmin gt (¢ps ) , subject to 6% = arg min B> (de),
8 )

Inner loop: Trains a randomly initialized network on the synthetic dataset S until convergence
Outer loop: uses the large target dataset 7" as a validation set optimize S

[1
[2
3
[4

Dataset distillation. arXiv preprint arXiv:1811.10959, 2018.

Dataset condensation with gradient matching. ICLR, 2021.

Dataset condensation with differentiable siamese augmentation. ICML, 2021.

Dataset condensation with distribution matching. WACV, 2023. 4
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» Exsting Methods

SOTA DC methods are based on surrogate objectives to make the model
trained on S and T approximate each other in

*  Parameter / Gradient / Distribution / ... matching

07 ~ @S Po(xi) ~ Po(si)
VoL (0) ~ VoLS ()

real data synthetic data

Large training set — _—— .| -
Matching Forward pass - s
Update 1 4= - \
synthetic set | Backpropagation

= -z “ embedding spaces

Small synthetic set

Fig. gradient matching!!l. Fig. distribution matching/2l.

[1] Dataset condensation with gradient matching. ICLR, 2021.
[2] Dataset condensation with distribution matching. WACV, 2023. 5
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> Our Motivation

60
40

20

(a) Real (b) DSA (c) DM (d) LoDM

Both the real image and the image generated by traditional DC methods are
low-rank, so performing DC in a high-dimensional pixel space is inefficient.
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» Our Low-Rank Data Condensation Plugin
We conduct a low-rank decomposition of the content in each channel of an image.

Therefore, the goal of data condensation in the low-rank manifold is to optimize
A € RNsxDxHxr ang B ¢ RNsxPxmW guych that the network ¢gecas , trained on the small
reconstructed data @(4.8) , achieves similar performance to the network ¢+ trained on

the high-dimensional large dataset 7.

Exinpr [6(007 (%i),9)] = Exinpy [€(Pgacam (%), y)]

1
s.t. 07 = arg min £7 (§7) = argmin — Z {(por(Xi),y),
o D e

1
gUAB) — argmin LHAB) (PUAB)) = argmin — Z {(poaca.n (AiB;),y),

92UA,B) guLAE S (AiB;,y)eQ(A,B)

= AzBZ = [Ai,lBi,l‘ e |Ai,DBi,D] c RDXHXW
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» Incorporating Low-rank DC Plugin to SOTA Methods

Our proposed low-rank manifolds DC plugin can be easily incorporated
into existing DC solutions.

 LoDC: Low-rank Dataset Condensation with Gradient Matching

A,B

min EGUNPS [Zd (VeﬁT (Qt‘ﬂ ,VeﬁQ(A,B) (Qt‘Q(.A, B)))] 7
=1

« LoDM: Low-rank Dataset Condensation with Distribution Matching

Nas
I;‘l’ig EB()NPQD |: (NT Zd)ao m‘n‘. JN_AB Z wﬂo A B )j[

i=1



» Data Condensation for Deep Learning

Table 1: Comparison with coreset selection methods and dataset condensation methods.
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: Coreset Selection Methods Dataset Condensation Methods
DataSet Img/Cls Ratio% i i
Random Herding Forgetting DD LD DC DSA DM LoDM(Ours)
1 0.017 [649+3.5 89.2+1.6 35.5+£5.6 - 60.94+3.2 91.7+0.5 88.7+0.6 89.74+0.6 91.2404
MNIST 10 0.17 |95.14+09 93.74+0.3 68.14+3.3 [79.5+8.1 87.3+0.7 97.44+0.2 97.1+0.1 96.5+02 97.7+0.1
50 0.83 (979402 94.810.2 88.2+1.2 - 93.34+0.3 98.84+0.2 99.24+0.1 97.5+0.5 98.240.1
1 0.02 |144420 21.5%1.2 135412 - 25.74+0.7 28.34+0.5 28.840.7 26.0+0.8 43.8+0.8
CIFAR10 10 02 260412 31.64+0.7 23.3+1.0 |36.84£1.2 383+04 44940.5 51.1+05 48.9+0.6 59.84+04
50 | 4344+1.0 404+06 233%1.1 - 425404 539+0.5 60.6£05 63.0+04 64.610.1
CIFAR100 1 0.2 42403 84403 45+02 = 11.54£04 128403 139+03 114403 25.6£0.5
10 2 14.6+0.5 17.3+0.3 15.1+0.3 - - 25.240.3 323403 29.7+03 37.5+0.8
: 1 0.2 1.440.1 2.840.2 1.640.1 - - 4.614+0.2 4.7940.2 3.940.2 10.3:£0.2
TinylmageNet A
10 2 5.04+0.2 63+02 51402 - - 11.64+0.3 14.74+0.2 129404 18.3+0.3

Table 4: Compare with other advanced dataset condensation methtods.

MTT IDC-1 IDC HaBa RememberThePast

463% | 36.7% | 50.6% | 48.3% 66.4%
CIFARIO (Img/Cls=1) | NPT T T oIDCT | LolDC | LoHzBa | LoRememberThePast

58.7% | 492% | 572% | 66.1% 68.4%

MTT IDC-1 IDC HaBa RememberThePast

243% | 16.6% | 249% | 33.4% -
CIFAR100 (Img/Cls=1) |- T ToIDCT | TolDC | LoHaBa | LoRememberThePast

31.0% | 269% | 33.1% | 36.1% -

Observation: By utilizing the same memory, our low-rank LoDM can represent a more significant
number of images, which is significantly better than other SOTA dataset compression methods,
especially when the sample size of each class is small.
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» Data Condensation for Continual Learning

9 <3 <R
= —4— Random o— DM *;60 —4— Random o— DM = —4— Random »— DM
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Observation: we observe that in the three subfigures (a-c), GDumb+LoDM achieves the best

results. This suggests that our condensed data in a low-rank manifold is also meaningful for
continual learning with limited memory.

10
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Thanks!
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