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Dataset Distillation / Condensation

Fig.1 Dataset distillation problem paradigm[1]. 

Definition: Dataset condensation distills a large real-world dataset into a 
small synthetic dataset, with the goal of training a network from scratch 
on the latter that performs similarly to the former.
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Problem Definition

We expect a network      trained on the small dataset S to have similar 
performance to a network      trained on the large training set T on the unseen 
test dataset, that is:

S


T


where      represents the real distribution of the test dataset.TP
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Exsting Methods

[1] Dataset distillation. arXiv preprint arXiv:1811.10959, 2018. 
[2] Dataset condensation with gradient matching. ICLR, 2021.
[3] Dataset condensation with differentiable siamese augmentation. ICML, 2021.
[4] Dataset condensation with distribution matching. WACV, 2023.

Existing DC methods [1-4] first initialize the dataset                             as a set of 
learnable parameters in high-dimensional pixel space. • NS: the number of synthetic images  

• C: channels 
• H: image’s height
• W: image’s width

In the first dataset distillation work DD [1], dataset S is treated as a 
hyperparameter in a bi-level optimization problem as follows:

Optimization:

• Inner loop: Trains a randomly initialized network  on the synthetic dataset S until convergence
• Outer loop: uses the large target dataset T as a validation set optimize S

Accuracy matching:
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[1] Dataset condensation with gradient matching. ICLR, 2021.
[2] Dataset condensation with distribution matching. WACV, 2023.

• Parameter / Gradient / Distribution / ... matching 

Fig. gradient matching[1]. Fig. distribution matching[2].

SOTA DC methods are based on surrogate objectives to make the model 
trained on S and T approximate each other in

Exsting Methods
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Our Motivation

Both the real image and the image generated by traditional DC methods are 
low-rank, so performing DC in a high-dimensional pixel space is inefficient.
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Our Low-Rank Data Condensation Plugin
We conduct a low-rank decomposition of the content in each channel of an image.

Therefore, the goal of data condensation in the low-rank manifold is to optimize 
                                          such that the network           , trained on the small 
reconstructed data          , achieves similar performance to the network      trained on 
the high-dimensional large dataset T. 
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 Incorporating Low-rank DC Plugin to SOTA Methods

Our proposed low-rank manifolds DC plugin can be easily incorporated 
into existing DC solutions.

• LoDC: Low-rank Dataset Condensation with Gradient Matching

• LoDM: Low-rank Dataset Condensation with Distribution Matching
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Data Condensation for Deep Learning

Observation: By utilizing the same memory, our low-rank LoDM can represent a more significant 
number of images, which is significantly better than other SOTA dataset compression methods, 
especially when the sample size of each class is small.
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Data Condensation for Continual Learning

Observation: we observe that in the three subfigures (a-c), GDumb+LoDM achieves the best 
results. This suggests that our condensed data in a low-rank manifold is also meaningful for
continual learning with limited memory.



Thanks！
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