
Optimize Planning Heuristics to Rank, not to
Estimate Cost-to-Goal

Leah Chrestien, Tomás̆ Pevný, Stefan Edelkamp, Antońın
Komenda

Czech Technical University in Prague (CTU)

November 13, 2023



Background

The majority of research in heuristic search to estimate the cost-to-goal L2 loss
to generate optimal heuristics for many best-first heuristic search algorithms
including A* or IDA∗.

L2 =
1

N

N∑
i

(hi − h∗i )2

Issues with L2

J A true cost-to-goal h∗ does not guarantee that the search will
find optimal solutions during minimum expansion of states.

J Optimizing cost-to-goal h∗ does not utilize states off the solution
path.

J Heuristic value for dead-end states are set to large values which
can affect the stability of convergence of gradient-based
optimization methods.



Our contribution



How do we rank states?

For a forward search merit function
f (s) = αg(s) + βh(s),
rank the states by setting these inequalities.

f (s1) < f (s4)

f (s2) < f (s4)

f (s2) < f (s6)

f (s2) < f (s5)

f (s2) < f (s7)

The real heuristic values are not required!

Optimal states: s0, s1, s2, s3
Non optimal states: s4, s5, s6, s7



Perfect ranking heuristic

Definition 1 (Perfect ranking heuristic)

A heuristic function h(s) is a perfect ranking in forward search with a
merit function f (s) = αg(s) + βh(s) for a problem instance if and only
if there exists an optimal plan π = ((s0, s1), (s1, s2), . . . , (sl−1, sl)) such
that

g(s) is the cost from s0 to s in a search-tree created by
expanding only states on the optimal path π;

f (sj) > f (si ),∀si ∈ Sπ ∧ sj /∈ Sπ

where S denote all possible states s ∈ S, s0 ∈ S is the initial state.

If the heuristic function satisfies these conditions, it is known as
an optimally efficient heuristic function. This ensures that the search expands
the minimum number of states on the optimal path.



Properties of an optimally efficient heuristic function

Pros and Cons

1. Rank optimization uses states off the solution path while
cost-to-go doesn’t.

2. Unlike cost-to-goal, a perfectly ranking heuristic does not
provide a false sense of optimality.

3. Zero loss means optimal behavior.

4. Heuristic values for dead-end states are not needed.

5. The perfectly ranking heuristic is not goal-aware.



Experimental Method: 1. Generate initial training data

For details on SymBA*, see
https://homes.cs.aau.dk/ alto/papers/Planner-SymBA14.pdf

https://homes.cs.aau.dk/~alto/papers/Planner-SymBA14.pdf


Experimental Method: 2. Instantiate the losses

Expand the A* and GBFS search trees on samples. Minimize the number of
violated conditions/inequalities (see slide below) for a problem instance
(Γ, s0,S∗) and its optimal plan π.

For a heuristic function h(s, θ) with parameters θ ∈ Θ, the number of violated
conditions can be counted as

L01(h, Γ, π) =
∑

si∈Sπ

∑
sj∈Oi\Sπ:i

Jr(si , sj , θ) > 0K, (1)

where
r(si , sj , θ) = α(g(si )− g(sj)) + β(h(si , θ)− h(sj , θ)), (2)

In practice, the Iverson bracket J·K (also called 0-1 loss) is usually replaced by a
convex surrogate such as the hinge-loss.



Experimental Method: 3. Train the NNs.

We instantiate the following loss functions that minimize the violated
inequalities on states expanded during A* and GBFS search:

L∗in A* search.

Lgbfs in GBFS search.

L2 or cost-to-go in regression.

Lrt that compares states only on the solution trajectories.

Lbe known as Bellman loss. 1

Lle, a policy guided search with GBFS modified for efficiency. 2

1
Learning general optimal policies with GNNs: Expressive power, transparency, and limits.

2
Policy-guided heuristic search with guarantees.



Coverage

A* GBFS
problem complx. L∗ Lgbfs Lrt L2 Lbe L∗ Lgbfs Lrt L2 Lbe Lle

Blocks 100 100 100 99 100 100 100 100 100 100 99
Ferry 98 98 100 92 100 98 100 100 100 98 98
N-Puzzle 89 87 88 83 89 92 89 89 89 92 88
Spanner 100 89 100 84 92 100 100 100 100 100 100
Elevators 91 85 75 36 66 92 85 79 76 67 58

Sokoban 3 boxes 99 98 96 97 92 98 100 94 95 92 98
4 boxes 89 89 85 81 82 87 91 84 83 84 84
5 boxes 80 75 72 72 73 78 77 74 72 72 73
6 boxes 76 69 59 51 53 73 71 56 51 54 64
7 boxes 55 49 47 42 45 51 49 48 43 45 49

Maze w. t. 50 × 50 92 91 88 87 87 89 90 89 84 85 89
55 × 55 78 75 73 72 74 74 75 74 72 75 74
60 × 60 49 37 35 32 31 42 48 36 34 32 42

Sliding puzzle 5 × 5 88 83 84 80 82 86 87 84 84 84 85
6 × 6 51 48 49 45 46 47 49 45 43 46 48
7 × 7 39 35 36 32 34 35 36 35 32 34 35


