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Promises of distributed
research networks

OHDSI
PCORNET
FDA Sentinel
4CE

v" Enhance generalizability
v" Accelerate decision-making

v Study underrepresented

populations, rare diseases,

and exposures
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Question we seek

to answer

In multi-source settings, how can we
make optimal use of available data to
make causal inferences for a target
population of interest?
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In multi-source settings, how can we

make optimal use of available data to

make causal inferences for a target
population of interest?




Under multiple real-world constraints:

covariate shift

privacy constraints

covariate mismatch
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Target Estimand
AT — K1, T — Mo, T, where Ha, T — E{Y(a)\R — T} for a € {O, 1}

Target Outcome l Binary

Population Site Treatment
Indicator

Identification Assumptions

Consistency

Mean exchangeability over treatment in target population
Mean exchangeability over treatment in source population
Positivity of treatment in target population

Positivity of treatment in source population

Mean exchangeability over site selection

Positivity of site selection
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Site-specific
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» Density Ratio Weighting

* Multiply Robust
Estimation

* Covariate Mismatch




Density Ratio Weighting

for adjusting covariate shift across sites

{Q Existing methods }3-{ But

WWR" adjust for heterogeneity in Al ps\y requires pooling target
covariate distributions (covariate and source samples, which is
shift) across often not possible due to
sites by the inverse probability data privacy regulations.

of selection weighting (IPSW)



Density Ratio Weighting

for adjusting covariate shift across sites

{Q Existing methods }3-{ But

WR° adjust for heterogeneity in Al ps\y requires pooling target
covariate distributions (covariate and source samples, which is
shift) across often not possible due to
sites by the inverse probability data privacy regulations.

of selection weighting (IPSW)

\ ’ We
'O' consider a density ratio weighting approach, which offers

U4 N\
a»

d‘ equivalent estimation without the need for direct data pooling.



Multiply Robust Estimation

for multiple, different models across sites

I

@\=! Existing methods }3-{ But
R require common models to A i s beneficial for investigators

be specified across sites. at different sites to incorporate
site-specific knowledge when

specifying candidate models.



Multiply Robust Estimation

for multiple, different models across sites

‘r_ Existing methods s=% But
WA require common models to A i s beneficial for investigators
be specified across sites. at different sites to incorporate

site-specific knowledge when
specifying candidate models.

\ ’ We

'Q' We relax this requirement by adopting a multiply robust
estimator, allowing investigators in each site to propose
multiple, different outcome and treatment modeils.




Covariate Mismatch

adjusted by a new nuisance function T,

‘r_ Existing methods s=% But
WER° assume a common set of assumption rarely met due to
observed covariates. variations in local practices,

e.g., differing data collection
standards and coding practices.



Covariate Mismatch

adjusted by a new nuisance function T,

‘r_ Existing methods s=% But
PER° assume a common set of assumption rarely met due to
observed covariates. variations in local practices,

e.g., differing data collection
standards and coding practices.

\ ’ We
'Q' We introduce a new nuisance function 7, ; which projects all
site-specific estimates of conditional outcomes to a common
hyperplane defined by shared effect modifiers across sites.
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Federated
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Ensemble




Federated Estimation

by an adaptive ensemble method

‘r_ Existing methods s=% But
MR - Target only preventing negative transfer is

« Sample size weighting (SS) critical when there are multiple,
 Inverse variance weighting (IVW) potentially biased source sites.



Federated Estimation

by an adaptive ensemble method

‘r_ Existing methods ;;% But
MR - Targetonly A preventing negative transfer is
« Sample size weighting (SS) critical when there are multiple,
 Inverse variance weighting (IVW) potentially biased source sites.

\ ’ We
'Q' We combine all site-specific estimates by an adaptive
ensemble method; control for bias due to non-transportable
site estimates while achieving optimal efficiency.




Treatment effect of percutaneous coronary intervention (PCI) on
length of hospital stay for acute myocardial infarction (AMI) patients

Target state: Maine

Source states: 48 other continental states
Coarsened covariates: Demographics
Additional covariates: Comorbidities



Treatment effect of percutaneous coronary intervention (PCI) on
length of hospital stay for acute myocardial infarction (AMI) patients

Target state: Maine

Source states: 48 other continental states
Coarsened covariates: Demographics
Additional covariates: Comorbidities

Estimator KEst. (CI)
Target -7.63 (-1145 -3.81) | .
SS —9.93(-1529 —4.56) - —
IVW  -8.94 (=947 —-841) - -
AIPW-L1 -7.84(-9.60 —-6.09) - .
MR-L1 -749(-9.82 -5.16) - -

16 -14 -12 -0 -8 -6 -4 -2 0

Figure: Estimates of PCI treatment effect in Maine with covariate mismatch in patient comorbidities



Figure: Federation weights across states for the PCI treatment effect in Maine with four federated estimators
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