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Our Problem

Event data typically comes in streams, how to learn event streams continuously?
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Our Key Idea: Using Prompt Pool to Instruct the Learning
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Our Model: Prompt-augmented Temporal Point Process
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Model Training: Joint Optimization with Prompts and TPP

p g, min ,Cﬁnu(Pafczsenc,f«zsdecHaZ > (foen.(eiQts), kr)),
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Model Inference: Thinning Sampling with retrieved prompts

Algorithm 2 PromptTPP at test time of the 7 -th task.

Input: An event sequence s[o, 1) = {e;@t;}]_,. Trained base model with a encoder f,_ . and a
decoder f,,,_; trained CtRetroPromptPool (K, V) = {(k;, P;)}}, and the score function .
Output: Sampled next event €I+1@?I+1-
1: procedure DRAWNEXTEVENT(So, 77, féene) fhaee)
2: to T, H<+ S[0,T]
3: > Compute sampling intensity
4 {Xe(t; | H)}L, < SAMPLEINTENSITY(S[0,7], fpunc) facer {(Kir Pi)}ity) for all ¢; €

(t07 OO)
5: > Compute the upper bound \*.
6: D Technical details ccin befotgd in Mei & Eisner (2017) Ta ke retro_ prompts as
7:  find upper bound A* > 3" | A (t; | H) forall t; € (o, 00) input into the
8: repeat N calculation of the
9: draw A ~ Exp(A*); to += A > time of next proposed event t11 intensities

10: -~ Unif(0,1)

11: untilud* < S A (o | H)

12: drawery; € {1,..., E} where probability of e is o< Ac(to | H)

13:  return ;1 Qt;

14: procedure SAMPLEINTENSITY(S[0,77, féunes foaeer {(Kis Pi) }41)

15:  Assume the last event in s, 7] is eQ?

16:  Generate a list of sample times {¢;}_;,t; > T.

17:  Compute the intensity at sample times  A.i; <  CALCINTEN-
SITY(S[O,t]7 e@t, f¢enc’ f¢dec’ {(ku Pz)}z]\il)

18:  return {\.(¢; | H)},



Please come to our poster for

Model details !
Training details !

Work well ? Very well !

Please download our paper at




