

From Tempered to Benign Overfitting in ReLU Neural Networks

Guy Kornowski* Gilad Yehudai* Ohad Shamir

Weizmann Institute of Science

Spotlight presentation

Main Question: Why do overparameterized neural networks generalize?

Main Question: Why do overparameterized neural networks generalize?

Main Question: Why do overparameterized neural networks generalize?

Main Question: Why do overparameterized neural networks generalize?

Main Question: Why do overparameterized neural networks generalize?

Main Question: Why do overparameterized neural networks generalize?

Main Question: Why do overparameterized neural networks generalize?

- Even when trained to fit noisy samples, even without regularization...

• Seems to defy classical learning theory, "Occam's razor"...

• Noisy "classification" data: $S = (x_i, y_i)_{i=1}^m \subset \mathbb{R}^d \times \{\pm 1\}$

- Noisy "classification" data: $S = (x_i, y_i)_{i=1}^m \subset \mathbb{R}^d \times \{\pm 1\}$
 - Ground truth $f^*(x_i) \equiv 1$, each y_i flipped w.p. $p \in \left[0, \frac{1}{2}\right)$

- Noisy "classification" data: $S = (x_i, y_i)_{i=1}^m \subset \mathbb{R}^d \times \{\pm 1\}$
 - Ground truth $f^*(x_i) \equiv 1$, each y_i flipped w.p. $p \in \left[0, \frac{1}{2}\right)$
- Two-layer ReLU neural network $N_{\theta}(x) \coloneqq \sum_{j=1}^n a_j \cdot \left[w_j \cdot x + b_j \right]_+$

- Noisy "classification" data: $S = (x_i, y_i)_{i=1}^m \subset \mathbb{R}^d \times \{\pm 1\}$
 - Ground truth $f^*(x_i) \equiv 1$, each y_i flipped w.p. $p \in \left[0, \frac{1}{2}\right)$
- Two-layer ReLU neural network $N_{\theta}(x) \coloneqq \sum_{j=1}^n a_j \cdot \left[w_j \cdot x + b_j \right]_+$
- Network interpolates dataset: $y_i N_{\theta}(x_i) > 0$, $\forall i \in [m]$

• Analyze the *clean* test error $L(N_{\theta}) \coloneqq \Pr_{x}[N_{\theta}(x) \leq 0]$

- Analyze the *clean* test error $L(N_{\theta}) \coloneqq \Pr_{x}[N_{\theta}(x) \leq 0]$
 - The overfitting is called "benign" if $L(N_{ heta}) o 0$ [Bartlett et al. '20]

- Analyze the *clean* test error $L(N_{\theta}) \coloneqq \Pr_{x}[N_{\theta}(x) \leq 0]$
 - The overfitting is called "benign" if $L(N_{ heta}) o 0$ [Bartlett et al. '20]
 - The overfitting is called "tempered" if $L(N_{\theta}) \in (0, \frac{1}{2})$

- Analyze the *clean* test error $L(N_{\theta}) \coloneqq \Pr_{x}[N_{\theta}(x) \leq 0]$
 - The overfitting is called "benign" if $L(N_{ heta}) o 0$ [Bartlett et al. '20]
 - The overfitting is called "tempered" if $L(N_{\theta}) \in (0, \frac{1}{2})$
 - \star Special case of ineterest is when $L(N_{\theta})$ scales with p, e.g. $L(N_{\theta}) \approx p$

- Analyze the *clean* test error $L(N_{\theta}) \coloneqq \Pr_{x}[N_{\theta}(x) \leq 0]$
 - The overfitting is called "benign" if $L(N_{ heta}) o 0$ [Bartlett et al. '20]
 - The overfitting is called "tempered" if $L(N_{\theta}) \in (0, \frac{1}{2})$
 - \star Special case of ineterest is when $L(N_{\theta})$ scales with p, e.g. $L(N_{\theta}) \approx p$
 - The overfitting is called "catastrophic" if $L(N_{\theta}) \rightarrow \frac{1}{2}$

Main technical tool: Implicit bias

Gradient based training with certain losses (e.g. logistic) drives θ towards a KKT point of the margin maximization problem

$$\min \|\theta\|^2 \quad s.t \quad y_i N_{\theta}(x_i) \ge 1 \ \forall i \in [m]$$

[Lyu & Li '20, Ji & Telgarsky '20]

Theorem: In dimension d=1, with noise level p, w.h.p. over the sample any KKT point θ satisfies $L(N_{\theta}) \in \left(p^5, \sqrt{p}\right)$.

Moreover, any local minimum of max margin θ satisfies $L(N_{\theta}) \approx p$.

Theorem: In dimension d=1, with noise level p, w.h.p. over the sample any KKT point θ satisfies $L(N_{\theta}) \in \left(p^5, \sqrt{p}\right)$.

Moreover, any local minimum of max margin θ satisfies $L(N_{\theta}) \approx p$.

Theorem: In dimension $d \gtrsim \operatorname{poly}(m) \log(1/\epsilon)$, under some assumptions*, w.h.p. over the sample, KKT points θ satisfy $L(N_{\theta}) \leq \epsilon$.

Equivalently, $L(N_{\theta}) \lesssim \exp(-d)$.

Theorem: In dimension d=1, with noise level p, w.h.p. over the sample any KKT point θ satisfies $L(N_{\theta}) \in \left(p^5, \sqrt{p}\right)$.

Moreover, any local minimum of max margin θ satisfies $L(N_{\theta}) \approx p$.

Theorem: In dimension $d \gtrsim \operatorname{poly}(m) \log(1/\epsilon)$, under some assumptions*, w.h.p. over the sample, KKT points θ satisfy $L(N_{\theta}) \leq \epsilon$.

Equivalently, $L(N_{\theta}) \lesssim \exp(-d)$.

Empirical study of intermediate dimensions

Empirical study of intermediate dimensions

Empirical study of intermediate dimensions

Thanks!