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Main Question: Why do overparameterized neural networks generalize?
- Even when trained to fit noisy samples, even without regularization...
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Overfitting puzzle

Main Question: Why do overparameterized neural networks generalize?
- Even when trained to fit noisy samples, even without regularization...
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* Seems to defy classical learning theory, “Occam’s razor”...
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Setting

* Noisy “classification” data: S = (x;, v;)*, € R%x{+1}
- Ground truth f*(x;) = 1, each y; flipped w.p. p € [0,2)
» Two-layer ReLU neural network Ny (x) = X7-; a; - [w; - x + bj]+

* Network interpolates dataset: y;Ng(x;) > 0, Vi € [m] A
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TypeS Of OVerflttlﬂg (following Mallinar et al. "22)

* Analyze the clean test error L(Ng) = Pr[Ng(x) < 0]
X

- The overfitting is called if L(Ng) — O [Bartlett et al. "20]
- The overfitting is called if L(Ng) € (O, %)
% Special case of ineterest is when L(Ng) scales with p,

- The overfitting is called “catastrophic” if L(Ng) — %




Main technical tool: Implicit bias

Gradient based training with certain losses (e.g. logistic) drives 0
towards a KKT point of the margin maximization problem

min ||8||? s.t y;Ng(x;) =1 Vi € [m]

[Lyu & Li ‘20, Ji & Telgarsky 20]
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Theorem: In dimension d = 1, with noise level p, w.h.p. over the sample
any KKT point 6 satisfies L(Ng) € (p°,yP) -

Moreover, any local minimum of max margin @ satisfies L(Ng) = p .

Theorem: In dimension d = poly(m)log(1/€), under some
assumptions”, w.h.p. over the sample, KKT points 8 satisfy L(Ng) < €.

Equivalently, L(Ng) < exp(—d).

More results and details in paper...

“We give different sets of assumption, probably not minimal
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Thanks!



