UNIVERSITY OF

MICHIGAN

LLMs Can Implement Policy Iteration

Ethan Brooks!, Logan Walls?, Richard L. Lewis?, Satinder Singh'
!Computer Science and Engineering, University of Michigan
’Department of Psychology, University of Michigan

LLMs Can Implement Policy Iteration

1. Feed the MDP into the LLM.
2. Use the LLM to estimate value.
3. Use these estimates in Policy Iteration.

Results Overview

LLM goes from random to near-optimal performance in 100s
of time-steps.

* Domains are toy / text-based

Only large models learn:
* GPT-J (6B params): doesn’t learn
* InCoder (6.7B params): doesn’t learn

* OPT (30B params): doesn’t learn
e code-cushman-001: learns inconsistently

* code-cushman-002: /earns consistently

Interacting with the environment

During episode:
* Observes state

* For each in action space:
* Compute value given state and
* Choose with highest value

Receive reward and next state.
Add interaction to replay buffer
 We use the LLM to compute value.

Estimating Q™ (s, @) Values

* Generate rollout sampled from current policy m starting
with action,

* Use LLM to alternately model
 transition (next-state, reward, termination)
e current policy

 Use rollout to estimate value:

* Q" (sp,a) = YNh—eyT Ty
e Result is unbiased Monte-Carlo estimate

Chain Environment

Navigate to goal state and “try” it.

* Initial state State 1 2 3 45 6 7 8
* Agent spawns randomly Reward

* Actions (on try-goal)
o Left Y X,
* Right
* “Try goal”

e Reward
e 1 for “try goal” on state 4
* 0 otherwise

* Termination
* On “try goal” (any state)
e After fixed time limit

O 001 00 0 O

|II

LLM as Next-State Model

(state==2

right

state == State 1 2 3 4 5 6 7 8
Random ight X demonstrates (on try-goal) :
transitions that right Y A

state == ,

increments state
state==0
right

. state==1)

S_tate ==4 LLM generalizes
right to suffix state

state ==

LLM as Reward Model

(state==2

right

reward == State 1 2 3 4 5 6 7 8
Random . demonstrates (on try-goal)

. right > .)P %

transitions that state 4 is Y A,

reward ==

the goal
state==0
right

. reward==0)

state == 4 LLM infers
right reward for suffix

reward == state

LLM as Policy

state == Policy moves
right right when
reward == state < 4 State 12 3 4 5 6 7 8
o Reward 00010000
Trajectories N (on try-goal)
sampled 2 state == v %
from recent ‘ -
. left
episodes q Policy moves
reward ==
>~ left when
state == state >4
try goal
_ reward ==

to suffix state

state == } LLM generalizes

right

Policy Improvement

Behavior Policy Prompt Policy Rollout Policy Behavior Policy

A Trollout I}
" » Torompt » Toow | SERQA B D
-1
! / / TTroll 14
4 » Tprompt » Tigioue | ArgMax QTrotlent (hy_y,a) n

/ I} / 144
VT ~ |/ Tprompt ~ |/ Trollout < VT ~ YTprompt ~ |/ Trollout < /7T ---

Algorithms
= ICPIl = No ArgMax - Tabular Q = Matching Model

Chain Distractor Chain Maze

0 20 40 6080 0 40 80120 0 40 80 120

Our method in red

step step step (lower is better)
Mini Catch Mini Invaders Point Mas
_0.8
0.6
0'2 _ lh"-.,, ﬂl\[‘u"w‘, g J TR
0 80 160 240 O 80 1600 80 160

step step step

Why RL + LLMs is a happy marriage

 RL can leverage knowledge distilled in LLMs to learn
rapidly.

 LLMs can use RL to improve without further (gradient-
based) training.

