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LLMs Can Implement Policy Iteration

1. Feed the MDP into the LLM.
2. Use the LLM to estimate value.
3. Use these estimates in Policy Iteration.
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Results Overview

LLM goes from random to near-optimal performance in 100s
of time-steps.
• Domains are toy / text-based

Only large models learn:
• GPT-J (6B params): doesn’t learn

• InCoder (6.7B params): doesn’t learn

• OPT (30B params): doesn’t learn

• code-cushman-001: learns inconsistently

• code-cushman-002: learns consistently



Interacting with the environment

During episode:
• Observes state
• For each ac.on in ac.on space:

• Compute value given state and acDon
• Choose ac.on with highest value
• Receive reward and next state.
• Add interac.on to replay buffer
• We use the LLM to compute value.
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Estimating 𝑄! 𝑠" , 𝑎 Values

• Generate rollout sampled from current policy 𝜋 starting 
with action, 𝑎
• Use LLM to alternately model
• transition (next-state, reward, termination)
• current policy

• Use rollout to estimate value:
• 𝑄! 𝑠", 𝑎 = ∑#$"% 𝛾%&#𝑟#
• Result is unbiased Monte-Carlo estimate



Navigate to goal state and “try” it.

Chain Environment

• Initial state
• Agent spawns randomly

• Actions
• Left
• Right
• “Try goal” 

• Reward
• 1 for “try goal” on state 4
• 0 otherwise

• Termination
• On “try goal” (any state)
• After fixed time limit

State 1 2 3 4 5 6 7 8
Reward
(on try-goal) 0 0 0 1 0 0 0 0

🏆 🏃
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LLM as Next-State Model
state == 2 
right
state == 3

state == 6
right
state == 7

state == 0 
right
state == 1

state == 4
right
state == 5

Prefix 
demonstrates 
that right 
increments state

LLM generalizes 
to suffix state

Random
transitions

State 1 2 3 4 5 6 7 8
Reward
(on try-goal) 0 0 0 1 0 0 0 0

🏆 🏃
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LLM as Reward Model
state == 2 
right
reward == 0

state == 4
right
reward == 1

state == 0 
right
reward == 0

state == 4
right
reward == 1

Prefix 
demonstrates 
that state 4 is 
the goal

LLM infers 
reward for suffix 
state

Random
transitions

State 1 2 3 4 5 6 7 8
Reward
(on try-goal) 0 0 0 1 0 0 0 0

🏆 🏃
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LLM as Policy
state == 2 
right
reward == 0

state == 5 
left
reward == 0
state == 4
try goal
reward == 1

state == 1
right

Policy moves 
right when 
state < 4

LLM generalizes 
to suffix state

Policy moves 
left when 
state > 4

Trajectories 
sampled 
from recent 
episodes

State 1 2 3 4 5 6 7 8
Reward
(on try-goal) 0 0 0 1 0 0 0 0

🏆 🏃
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Policy Improvement
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Our method in red
(lower is better)



Why RL + LLMs is a happy marriage

• RL can leverage knowledge distilled in LLMs to learn 
rapidly.

• LLMs can use RL to improve without further (gradient-
based) training.
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