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LLMs Can Implement Policy Iteration

1. Feed the MDP into the LLM.
2. Use the LLM to estimate value.
3. Use these estimates in Policy Iteration.




Results Overview

LLM goes from random to near-optimal performance in 100s
of time-steps.

* Domains are toy / text-based

Only large models learn:
* GPT-J (6B params): doesn’t learn
* InCoder (6.7B params): doesn’t learn

* OPT (30B params): doesn’t learn
e code-cushman-001: learns inconsistently

* code-cushman-002: /earns consistently



Interacting with the environment

During episode:
* Observes state

* For each in action space:
* Compute value given state and
* Choose with highest value

Receive reward and next state.
Add interaction to replay buffer
 We use the LLM to compute value.



Estimating Q™ (s, @) Values

* Generate rollout sampled from current policy m starting
with action,

* Use LLM to alternately model
 transition (next-state, reward, termination)
e current policy

 Use rollout to estimate value:

* Q" (sp,a) = YNh—eyT Ty
e Result is unbiased Monte-Carlo estimate



Chain Environment

Navigate to goal state and “try” it.

* Initial state State 1 2 3 45 6 7 8
* Agent spawns randomly Reward

* Actions (on try-goal)
o Left Y X,
* Right
* “Try goal”

e Reward
e 1 for “try goal” on state 4
* 0 otherwise

* Termination
* On “try goal” (any state)
e After fixed time limit
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LLM as Next-State Model
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LLM as Reward Model
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LLM as Policy
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Policy Improvement
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Algorithms
= ICPIl = No ArgMax - Tabular Q = Matching Model
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Why RL + LLMs is a happy marriage

 RL can leverage knowledge distilled in LLMs to learn
rapidly.

 LLMs can use RL to improve without further (gradient-
based) training.




