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' What spatial frequencies do humans and neural networks use to recognize natural objects? I
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Critical band masking of object recognition Figure 1. Demo: Note how far down each column you can recognize Results & Conclusion
objects. The edge of visibility (with an inverted-U shape) reveals the
The critical-band masking paradigm (Fletcher, 1940; Solomon & spatial frequencies that you use for recognition i.e., your spatial 1. Humans recognize natural objects using the same 1-octave-wide
Pelli, 1994) characterizes the spatial frequency channel used for frequency channel. spatial frequency channel that they use for letters, gratings, and

faces, making it a canonical feature of human object recognition.
2. The neural network channel is 2-4 times wider than the human
channel.

object recognition by measuring its sensitivity to frequency-filtered
noise. Frequencies that are key to object recognition will be more
affected by noise. 00

Humans (averaged) ResNet-50 Nhumans=14; Nnetworks=76

We measured thresholds of 14 human observers and 76 neural
networks on 16-way object recognition of 1100 ImageNet images in
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