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Diffusion models

Problem (Generative Modeling)

Learn a probability distribution from samples, and generate additional samples.

Diffusion models are a modern paradigm for
generative modeling with state-of-the-art per-
formance on image, audio, video generation,
with applications to inverse problems, molecu-
lar modeling, etc.
Picture from Y. Song, Sohl-Dickstein, Kingma, et al. 2020.

What theoretical guarantees can we obtain for diffusion models? Show convergence

given L2-accurate score estimate,

for general data distributions.

Expensive to evaluate; care about dependence on dimension d .
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SDE vs. ODE formulation

Denoising Diffusion
Probabilistic Modeling (SDE)

Probability Flow
(ODE)

dx→t = −x→t dt +
√
2 dWt

dx←t = x←t dt + 2∇ log pT−t(x
←
t )⏟  ⏞  

≈sT−t(x←t )

dt +
√
2 dWt .

Convergence guarantees with O(d) steps.
S. Chen, Chewi, Li, et al. 2023; H. Chen, Lee, and Lu

2023; Benton, De Bortoli, Doucet, et al. 2023

Lower bound Ω(d) for trajectory-wise
analysis, even for critically damped
Langevin diffusion (S. Chen, Chewi, Li,
et al. 2023).

dx→t = −x→t dt −∇ log pt(x
←
t ) dt

dx←t = x←t dt +∇ log pT−t(x
←
t )⏟  ⏞  

≈sT−t(x
←
t )

dt.

Much faster (10x–50x) in practice
(J. Song, Meng, and Ermon
2020)...

...but can sometimes be less
stable.

This work: O(
√
d) steps using

corrector steps.

Holden Lee Probability Flow ODE NeurIPS 2023 3 / 8



The trouble with SDE’s

DDPM:

dx←t = [x←t + 2∇ log pT−t(x
←
t )] dt +

√
2 dwt

x←t+h ≈ x←t + h [x←t + 2∇ log pT−t(x
←
t )] +

√
2h 𝜉, 𝜉 ∼ N(0, Id).

Discretization error from...

Drift term (order 1): O(Lh
√
d) → can take h = O

Ä
1

L
√
d

ä
.

Diffusion term (order 1/2): O(L
√
hd) → need to take h = O

(︀
1

L2d

)︀
.

Trajectories of Brownian motion are not smooth!

Probability flow ODE:

dx←t = [x←t +∇ log pT−t(x
←
t )] dt.
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Assumptions

Assumption

1 p0 has second moment Ep0 ‖x‖
2 = m2

2.

2 For each tk , the score estimate stk has error

‖∇ log ptk − stk‖
2
L2(ptk )

≤ 𝜀2sc.

3 ∇ log pt is L-Lipschitz for every t.

4 The score estimate stk is L-Lipschitz for every tk .
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DPUM (Diffusion Predictor + Underdamped Modeling)

Theorem (DPUM, S. Chen, Chewi, Lee, et al. 2023)

Suppose that the Assumptions hold. If the score error satisfies 𝜀sc ≤ ‹O( 𝜀√
L
), then the output

of DPUM gives TV error 𝜀 with number of steps N = ‹Θ ÄL2d1/2

𝜀

ä
.

Algorithm (simplified)

Draw ̂︀x0 ∼ N(0, Id). For n = 0, . . . , LT − 1:

Predictor: Starting from ̂︀xn/L, run the discretized probability flow ODE from time n
L to

n+1
L with step size hpred to obtain ̂︀x ′n+1

L

.

x←t+h = ehx←t + (eh − 1)sT−t(x
←
t ).

Corrector: Starting from ̂︀x ′n+1
L

, run underdamped LMC for time 1√
L
with step size hcorr to

obtain ̂︀x n+1
L
.
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Challenges

Problem: Cannot use Girsanov’s Theorem with ODE’s.
Solution: Use Wasserstein analysis with coupling.

Score perturbation lemma: Bound the time derivative of score.

E[‖𝜕t∇ log q→t (yt)‖2] ≲ L2d

Å
L+

1

t

ã
.

By Grönwall, get error bounds within 1
L time.
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Challenges

Problem: Cannot use Girsanov’s Theorem with ODE’s.
Solution: Use Wasserstein analysis with coupling.

Problem: Distance grows exponentially with rate L; can only run for time O(1/L).
Solution: Convert Wasserstein to TV error with a corrector step (short-time regularization).
Using data processing inequality for TV distance, we can restart coupling.

Predictor (P): Simulate the reverse SDE/ODE to track a time-varying distribution.

Corrector (C): Run MCMC (e.g., Langevin Monte Carlo) to converge towards a
stationary distribution.

Predictor-corrector (PC): Intersperse P & C steps.
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Challenges

Problem: Cannot use Girsanov’s Theorem with ODE’s.
Solution: Use Wasserstein analysis with coupling.

Problem: Distance grows exponentially with rate L; can only run for time O(1/L).
Solution: Convert Wasserstein to TV error with a corrector step (short-time regularization).
Using data processing inequality for TV distance, we can restart coupling.

Problem: Overdamped Langevin needs O(d) steps.
Solution: Use underdamped Langevin (Langevin “with acceleration”), which needs O(

√
d)

steps.

dxt = vt dt

dvt = −∇f (xt) dt − 𝛾vt dt +
√︀

2𝛾 dBt
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Conclusion

Using an ODE instead of SDE, in conjunction with underdamped corrector, reduces
dimension dependence from O(d) to O(

√
d).

Questions:

Can we relax smoothness assumptions?
Is the corrector necessary?
Is the higher error necessary?
Other ways to improve parameter dependence and stability?
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