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• Goal – expected return over all tasks 𝜏 :
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• Expectation may not suffice
• Single test task

• Sensitivity to risk



Robustness in Meta-RL

• Be robust to the task

• Goal – expected return over 𝛼 lowest-return tasks:

𝐚𝐫𝐠𝐦𝐚𝐱𝑪𝑽𝒂𝑹𝝉
𝜶 𝑬𝑹 𝑹
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• Only applied to 𝛼 worst tasks in the data

⇒ most data not used

⇒ sample inefficient



CVaR Policy Gradient

• Only applied to 𝛼 worst tasks in the data

⇒ most data not used

⇒ sample inefficient

• Robust Meta-RL (RoML):
• Over-sample low-return tasks

• Sample efficiency is recovered



Unbiased Policy Gradient

• Background:
• In standard (non-meta) RL, CVaR-PG yields biased gradients



Unbiased Policy Gradient

• Background:
• In standard (non-meta) RL, CVaR-PG yields biased gradients

• Theorem:
• In Meta-RL, CVaR-PG yields unbiased gradients



Experiments

• Better CVaR return

• Less sensitive to task



Experiments

• Better CVaR return

• Less sensitive to task

• Meaningful policies



RoML as Meta-Algorithm

• Can run on top of any meta-RL algorithm:

just modify task-sampling in training

• Example:
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