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Dependence Measures

e The mutual information between two random variables X and Y:

I(X:Y) = KL(Py y||P ®P)=f lo ( ' )dp
( X,Y| X Y ey g iPy ® Py XY

* The sliced mutual information SI [1] is:

SIX; Y) = f 107X; §7Y) dy () ® 7($)

Sdx—1xsdy~1
Where y is the uniform distribution.

[1] Goldfeld, Z. and Greenewald, K. (2021). Sliced mutual information: A scalable measure of statistical dependence. Advances in
Neural Information Processing Systems, 34.



Random slices
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* How to reach an optimal slicing distribution?
|.  The projection directions are mainly concentrated
into areas where the one-dimensional variables
contain the maximum mutual information
possible.
Il. The slicing directions are also diversified over the
e whole sphere, ensuring that all regions with
c . . e e
s relevant information are visited.
D

Optimally
distributed slices
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Definition of SI* A

The optimal sliced mutual information SI* between random variables X € R%
and Y € R can be expressed as:

\_

SI*(X;Y) = sup ff 107X;0"Y)do(8,9) :09 €EZ4. w.,00 €4 o
de—lxsdy—l X=X y=y

“ /

* Where 24, = {,u:,u € P(Sd_l), Ex,yNH[arccosleyI] = a)}

* We prove that for any wy, wy € [0, /2] there exists an optimal slicing policy o™ such

that the term is maximized.



ﬁ?roperties of SI” \

» SI*(X;Y) is nonnegative and symmetric.
»SI*(X;Y) = 0ifand only if X and Y are independent.

»>If X,, and Y,, are sequences of random variables with joint distribution P)g;,) Y that
converges pointwise to the joint distribution Py y then lim SI*(X,,;Y,,) = SI*(X; Y).
n—>0o

»Similar to M1, SI* has a relative entropy form, a variational representation, and a
discriminator-based form.
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Estimation of SI”

* {(X,,,Y,,)} arei.i.d. data points drawn from some Pyy.
* [, is a one-dimensional Ml estimator over n samples.

* {(6m, ©m)} are i.i.d slicing directions drawn from the optimal policy g .

m

— 1Cys

SPm(X;Y) = EZ[In(H;TX; 0} V)]
=1



Estimation of SI”

How to obtain g ?

> Slicing directions can be expressed as (6, ¢) = (f1 (W,v), LY, v)) with
(Y,v) ~ Uniform (de_l) % Uniform(de_l).
» Estimate f1, f using NNs.
To train the NNs:

= Sample Y and v independently and uniformly on spheres S%~1 and Sy~1

» Feed the random slicesto f; and f5: 0 = f;(Y,v), @ = fL (Y, V)

» Calculate average Ml over output slices: A = i i n(HTX Qi Y)

» Calculate £L = A — /11( D.k,j Arccos

T
f() fl(J)‘ /12( Dk, j arccos |f,

= Update f; and f, in the direction of increasing L.
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Convergence Rate

The uniform error bound of ST*,, ,,, (X; Y) is:

sup E[|SI(X; V) — ST (X V)] < 6(n) +

Pxy

2ym

/

* Where 6(n) is the absolute error that uniformly bounds the one-dimensional

1/2
mutual information estimation, and U « (d;1 + d;l) /

—) Significantly better than Ml



Evaluation of ST~

Optimal slicing distribution q Slices and samples efficiency

Common Signal Common Signal Elliptical Elliptical

AUC
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Evaluation of ST~

e Performance in varied relationships between variables and noise ratios

AUC
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Evaluation of SI”

* Performance in very high-dimensional Representation Learning tasks
STL-10 (96X96 images)

B ;i";‘; 67fClS 58Y48  We compare SI* against SI and M1 using
1 . " A .
DIM (MI) 6015 | 6381 | 6192 the algorl’Fhm Deep InfoMax (D.II\/I) [2] on
DIM (SI) 7454 | 7134 | 68.90 two baseline datasets, along with the results
DIM (ST*) 76.89 | 71.67 | 70.04 of BIGAN method [3].

CIFAR 10

conv fc ¥
BiGAN 62.57 62.74 52.54
DIM (MI) 72.66 70.66 64.71
DIM (SI) 74.37 70.23 65.99
DIM (ST) 77.01 70.39 69.04

[2] Hjelm, R. D., Fedoroy, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A., and Bengio, Y. (2019). Learning deep representations
by mutual information estimation and maximization. In International Conference on Learning Representations.
[3] Donahue, J., Krahenbdhl, P., and Darrell, T. (2016). Adversarial feature learning. arXiv preprint arXiv:1605.09782.



Evaluation of SI”

e Performance in very high-dimensional Representation Learning tasks

STL-10 (96X96 images)

conv fc ¥
BiGAN 71.53 67.18 58.48
DIM (MI) 69.15 63.81 61.92
DIM (SI) 74.54 71.34 68.90
DIM (SI*) 76.89 71.67 70.04

CIFAR 10

conv f€ b4
BiGAN 62.57 62.74 52.54
DIM (MI) 72.66 70.66 64.71
DIM (SI) 74.37 70.23 65.99
DIM (ST¥) 77.01 70.39 69.04

 We compare SI* against SI and M1 using
the algorithm Deep InfoMax (DIM) [2] on
two baseline datasets, along with the results
of BIGAN method [3].
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[2] Hjelm, R. D., Fedoroy, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A., and Bengio, Y. (2019). Learning deep representations
by mutual information estimation and maximization. In International Conference on Learning Representations.
[3] Donahue, J., Krahenbdhl, P., and Darrell, T. (2016). Adversarial feature learning. arXiv preprint arXiv:1605.09782.



