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• Small, targeted adversarial perturbations mislead modern classifiers
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• Small, targeted adversarial perturbations mislead modern classifiers

• Adversarial examples exist for any classifier

• What is going on?

Adversarial vulnerability for any classifier, Fawzi+18. Are adversarial examples inevitable? Shafahi+18. Generalized no free 
lunch theorem for adversarial robustness, Dohmatob19.
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“any classifier admits  -adversarial examples for the minority class with probability                             ”ε 1− Cp exp
(

−nε
2
)

Impossibility Results



Data Concentration
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Data Concentration

Concentrated



- concentration

Pr[x ∈ S1|y = 1] ≥ 1− δ

Vol(S1) ≤ exp(−nε)

S1

Pr[x ∈ S2|y = 2] ≥ 1− δ

Vol(S2) ≤ exp(−nε)
S2

(ε, δ)

∃S1

∃S2



ε

P(∃v such that ‖v‖ ≤ ε, f(x+ v) $= y) ≤ δ

v

- robust classifier(ε, δ)



Geometric Characterization of Robustness

Construction of a robust classifier for distributions lying near linear subspaces (e.g., MNIST)
Application II

p is strongly-(ε, δ, γ)-concentrated

=
⇒

∃f such that f is (ε, δ + γ)-robust for p

Theorem 2

sufficient

∃f such that f is (ε, δ)-robust for p

p is (ε, δ)-concentrated

Theorem 1

necessary

=
⇒

Wide class of distributions where adversarial examples do not exist with high probability
Application I

“Adversarial Impossibility results are vacuous for natural data-distributions” 1− Cp exp
(

−nε
2
)



Certifying large- perturbations

Construction of a robust classifier for distributions lying near linear subspaces (e.g., MNIST)
Application II

!p

• The certificate is not limited to spherical balls
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Geometric Characterization of Robustness

Construction of a robust classifier for distributions lying near linear subspaces (e.g., MNIST)

Application II

p is strongly-(ε, δ, γ)-concentrated

=
⇒

∃f such that f is (ε, δ + γ)-robust for p

Theorem 2

sufficient

∃f such that f is (ε, δ)-robust for p

p is (ε, δ)-concentrated

Theorem 1

necessary

=
⇒

Wide class of distributions where adversarial examples do not exist with high probability

Application I
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