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Problem Definition

Input: Low-resolution image Output: High-resolution image

Super Resolution

Medical Analysis Face Recognition

Dynamically changing domain shift
Object Recognition Video Restoration......

Training Testing



Domain shift vs. Degradation Shift

Domain Shift
 Domain shift refers to the change in data distribution between training and testing

𝒟𝒟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≠ 𝒟𝒟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Degradation Shift
 The degradation process of real-world test images can be modeled by a classical degradation 

model 𝐷𝐷(⋅). It can be defined by:

 where ⊗ denotes the convolution operation, ↓𝑠𝑠 denotes the downsampling with a scale 
factor of 𝑠𝑠, and 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 denotes the JPEG compression with the quality factor 𝑞𝑞

(1)

(2)



Motivations

LR image LR image under unknow degradations

Pretrained
SR model

 Real-world images may exhibit various degradation types due to diverse imaging sensors and
multiple Internet transmissions, limiting the performance of pre-trained SR models

 It is hard to quickly adapt to dynamically changing domain (degradation shift)

ZSSRMZSR MLSR
work bad           /   time-consuming



Rethinking

 Existing SR methods suffer from two key limitations: low efficiency and narrow focus

on a single degradation type

How to quickly adapt to unknown domain during test-time?

How to design a generalized test-time learning framework?
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SRTTA Framework 

 We propose a super-resolution test-time adaptation framework (SRTTA) to adapt a

trained super-resolution model to target domains with unknown degradation

Our method



 We use a pre-trained degradation classifier to predict the degradation type 𝐶𝐶(𝑥𝑥) of the test image

 We construct a set of paired data using (Second-order Degradation scheme) and adapt the SR

model with our Second-Order Reconstruction loss

 We directly use the frozen pre-trained SR model when test samples are clean images

SRTTA Pipeline 

Our APP strategy

Test-time adaptation



Motivation of Second-order Degradation

How to quickly identify the type of degradation?

 Existing methods narrow focus on blur degradation
 We use a pre-trained degradation classifier to quickly recognize more degradation types

How to quickly construct paired data to adapt the SR model the target domain?

 Existing methods often precisely estimate the parameters of the degradation to construct the paired 
data, which is time-consuming

 We randomly generate parameters of degradations, avoiding estimating degradations



Second-Order Degradation Scheme
Second-Order Degradation

 Construct a set of second-order degraded images 𝑥𝑥𝑠𝑠𝑠𝑠 using Eqn. (3) according to the prediction 

results of the pre-trained degradation classifier

 𝒌𝒌 denotes a random blur kernel, 𝒏𝒏 denotes a random noise map, 𝑞𝑞 denotes a random quality factor

 Prediction results of the degradation classifier are denoted by 𝑐𝑐𝑏𝑏, 𝑐𝑐𝑛𝑛 and 𝑐𝑐𝑗𝑗 ∈ {0, 1}

(3)



Adaptation with Second-Order Reconstruction
Self-supervised adaptation

 Adapt the pre-trained model to remove the degradation using Eqn. (4)

 𝑓𝑓𝜃𝜃𝑙𝑙(⋅) denotes the output features of the 𝑙𝑙𝑡𝑡𝑡 layer of the pre-trained SR model 

Consistency maximization

 Keep the model consistent across adaptation using Eqn. (5)

 𝑓𝑓𝜃𝜃0
𝑙𝑙 (⋅) denotes the output features of the 𝑙𝑙𝑡𝑡𝑡 layer of the pre-trained SR model 

Second-order reconstruction

 Keep the model consistent across adaptation using Eqn. (6)

(4)

(5)

(6)



Adaptive Parameter Preservation for Anti-Forgetting
Diagonal Fisher information matrix

 Evaluating the importance of each parameters using Eqn. (7) and Eqn. (8)

 𝐷𝐷𝐶𝐶 denotes a set of clean images, 𝐴𝐴𝑖𝑖 ∈ 𝐴𝐴𝑗𝑗 𝑗𝑗=1
8 denotes an augmentation operation, 𝑅𝑅𝑖𝑖

denotes the inverse operation of 𝐴𝐴𝑖𝑖

(8)

Important Parameter Selection
 Select the important parameters using Eqn. (9)

 𝜏𝜏𝜌𝜌 denotes the first ρ-ratio largest value obtained by ranking the value 𝜔𝜔(𝜃𝜃𝑖𝑖0), 𝜌𝜌 is a 
hyperparameter to control the ratio of parameters to be frozen

 We only select the set of significant parameters 𝑆𝑆 once

(9)

(7)
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Synthesized Dataset

 Another synthesized dataset named DIV2K-MC consists of four kinds of  test images, which are synthesized 

with different mixed degradations, including BlurNoise, BlurJPEG, NoiseJPEG and BlurNoiseJPEG

 A new dataset named DIV2K-C consists of eight kinds of test images, which includes different degradations 



Comparison with SOTA on DIV2K-C

 SRTTA achieves the best performance in terms of PSNR and SSIM on average

 SRTTA achieves a better tradeoff between performance and efficiency



Comparison with SOTA on DIV2K-MC

 SRTTA achieves the best performance in terms of PSNR and SSIM on average on DIV2K-MC



Visual comparison on DIV2K-C

 Our SRTTA is able to reduce the effect of degradation and generate more plausible HR images



Visual comparison on real-world images

 Our SRTTA is able to generate HR images with fewer artifacts

 These results demonstrate that our method is able to be applied to real-world applications

Visual comparison for 2× SR on real-world images



Visual comparison on real-world images

 Our SRTTA is able to generate HR images with fewer artifacts

 These results demonstrate that our method is able to be applied to real-world applications

Visual comparison for 2× SR on real-world images
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Conclusion

 We propose a super-resolution test-time adaptation (SRTTA) framework to adapt any pre-

trained SR models to unknown target domains during the test time

 We use a pre-trained classifier to identify the degradation type for a test image and

construct the paired data using our second-order degradation scheme

 We construct new test datasets named DIV2K-C and DIV2K-MC, which contain eight

common degradations, to evaluate the practicality of different SR methods

Code: https://github.com/DengZeshuai/SRTTA

Conclusion

https://github.com/DengZeshuai/SRTTA
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